Show simple item record

Performance‐enhancement of high‐strength strain‐hardening cementitious composite by nano‐particles: Mechanism and property characterization

dc.contributor.authorDing, Yao
dc.contributor.authorYu, Kequan
dc.contributor.authorMao, Weihao
dc.contributor.authorZhang, Shuo
dc.date.accessioned2022-09-26T16:01:44Z
dc.date.available2023-09-26 12:01:40en
dc.date.available2022-09-26T16:01:44Z
dc.date.issued2022-08
dc.identifier.citationDing, Yao; Yu, Kequan; Mao, Weihao; Zhang, Shuo (2022). "Performance‐enhancement of high‐strength strain‐hardening cementitious composite by nano‐particles: Mechanism and property characterization." Structural Concrete 23(4): 2061-2075.
dc.identifier.issn1464-4177
dc.identifier.issn1751-7648
dc.identifier.urihttps://hdl.handle.net/2027.42/174770
dc.description.abstractNano‐SiO2 (NS), due to its prominent nucleation and pozzolanic effects, holds the promise to effectively enhance the tensile and compressive properties of high‐strength strain‐hardening cementitious composite (HS‐SHCC) at both early age (1d, 3d) and normal curing age (28d). The influence of nano‐SiO2 (NS) on the hydration, microstructure and mechanical properties of HS‐SHCC with different dosages (i.e., 0%, 1%, 2%, and 3% by mass of cement) were explored in this research. The nucleation effect of NS particles accelerated the hydration process, and the pozzolanic reaction tended to improve the hydration degree of matrix at the micro‐scale. The addition of NS particles decreased the porosity and refined the pore structure of the matrix. Single‐fiber pullout tests (meso‐scale) showed a remarkable improvement of interfacial bond stress with the incorporation of NS particles and consequently on the macro‐scale mechanical strengths enhancement of HS‐SHCC. The linkage between meso‐ and macro‐scale properties was established based on the micro‐mechanical model. The combination of filler effect, acceleration effect and pozzolanic reaction of NS particles enhanced the microstructures and mechanical properties of HS‐SHCC. The increase in compressive and tensile strength of NS‐modified HS‐SHCC could reach to 45% (1d) and 30% (1d), respectively, compared to those values of the reference specimen without NS addition. This research provided an effective way to enhance the tensile performance of HS‐SHCC, especially for the early‐age tensile property.
dc.publisherWILEY‐VCH Verlag GmbH & Co. KGaA
dc.subject.othernano‐SiO2
dc.subject.othermulti‐scale
dc.subject.othermicrostructures
dc.subject.othermechanical properties
dc.subject.otherhigh‐strength strain‐hardening cementitious composite
dc.titlePerformance‐enhancement of high‐strength strain‐hardening cementitious composite by nano‐particles: Mechanism and property characterization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering
dc.subject.hlbtoplevelMaterials Science and Engineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174770/1/suco202000637_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174770/2/suco202000637.pdf
dc.identifier.doi10.1002/suco.202000637
dc.identifier.sourceStructural Concrete
dc.identifier.citedreferenceLi W, Huang Z, Cao F, Sun Z, Shah SP. Effects of nano‐silica and nano‐limestone on flowability and mechanical properties of the ultra‐high‐performance concrete matrix. Construct Build Mater. 2015; 95: 366 – 74.
dc.identifier.citedreferenceNazari A, Riahi S, Riahi S, Shamekhi SF, Khademno A. Influence of Al 2 O 3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci. 2010; 6 ( 5 ): 6 – 9.
dc.identifier.citedreferenceSiddique R, Mehta A. Effect of carbon nanotubes on properties of cement mortars. Construct Build Mater. 2014; 50: 116 – 29.
dc.identifier.citedreferenceSanchez F, Sobolev K. Nanotechnology in concrete—a review. Construct Build Mater. 2010; 24 ( 11 ): 2060 – 71.
dc.identifier.citedreferenceSobolev K, Gutiérrez MF. How nanotechnology can change the concrete world. Am Ceram Soc Bull. 2005; 84 ( 10 ): 14.
dc.identifier.citedreferenceSobolev K, Flores I, Torres‐Martinez LM, Valdez PL, Zarazua E, Cuellar EL. Engineering of SiO 2 nanoparticles for optimal performance in nano cement‐based materials. Nanotechnology in construction 3. Berlin, Heidelberg: Springer; 2009. p. 139 – 48.
dc.identifier.citedreferenceRong Z, Sun W, Xiao H, Jiang G. Effects of nano‐SiO2 particles on the mechanical and microstructural properties of ultra‐high performance cementitious composites. Cem Concr Compos. 2015; 56: 25 – 31.
dc.identifier.citedreferenceWu Z, Shi C, Khayat KH, Wan S. Effects of different nanomaterials on hardening and performance of ultra‐high strength concrete (UHSC). Cem Concr Compos. 2016; 70: 24 – 34.
dc.identifier.citedreferenceZhang Z, Zhang Q. Matrix tailoring of engineered cementitious composites (SHCC) with non‐oil‐coated, low tensile strength PVA fiber. Construct Build Mater. 2018; 161: 420 – 31.
dc.identifier.citedreferenceWu Z, Khayat KH, Shi C. Effect of nano‐SiO 2 particles and curing time on development of fiber‐matrix bond properties and microstructure of ultra‐high strength concrete. Cem Concr Res. 2017; 95: 247 – 56.
dc.identifier.citedreferenceYeşilmen S, Al‐Najjar Y, Balav MH, Şahmaran M, Yıldırım G, Lachemi M. Nano‐modification to improve the ductility of cementitious composites. Cem Concr Res. 2015; 76: 170 – 9.
dc.identifier.citedreferenceSorelli L, Constantinides G, Ulm FJ, Toutlemonde F. The nano‐mechanical signature of ultra‐high performance concrete by statistical nanoindentation techniques. Cem Concr Res. 2008; 38 ( 12 ): 1447 – 56.
dc.identifier.citedreferenceLin Z, Li VC. Crack bridging in fiber reinforced cementitious composites with slip‐hardening interfaces. J Mech Phys Solids. 1997; 45 ( 5 ): 763 – 87.
dc.identifier.citedreferenceNaaman AE, Najm H. Bond‐slip mechanisms of steel fibers in concrete. Mater J. 1991; 88 ( 2 ): 135 – 45.
dc.identifier.citedreferenceChinese National Standard ( 2005 ). Test methods for flowability of cement paste, GB2419–2005.
dc.identifier.citedreferenceASTM C. Standard test method for compressive strength of hydraulic cement mortars (using 2‐in. opr [50‐mm] cube specimens). Annual Book of ASTM Standards Annual Book of ASTM Standards. 2013; 4 ( 1 ): 1 – 9.
dc.identifier.citedreferenceJSCE. Recommendations for design and construction of high‐performance fiber reinforced cement composites with multiple fine cracks. Tokyo, Japan: Japan Society of Civil Engineers; 2008.p. 1 – 16.
dc.identifier.citedreferenceZyganitidis I, Stefanidou M, Kalfagiannis N, Logothetidis S. Nanomechanical characterization of cement‐based pastes enriched with SiO2 nanoparticles. Mater Sci Eng B. 2011; 176 ( 19 ): 1580 – 4.
dc.identifier.citedreferenceWu, C. ( 2001 ). Micromechanical tailoring of PVA‐SHCC for structural applications (Doctoral dissertation), University of Michigan, 2005.
dc.identifier.citedreferenceAmerican Concrete Institute, & ACI Committee 224. Control of cracking in concrete structures‐ACI 224R‐01. Michigan: American Concrete Institute‐ACI; 2001.
dc.identifier.citedreferenceRanade R, Li VC, Stults MD, Rushing TS, Roth J, Heard WF. Micromechanics of high‐strength, high‐ductility concrete. ACI Mater J. 2013b; 110 ( 4 ): 375 – 84.
dc.identifier.citedreferenceLi VC, Mishra DK, Wu HC. Matrix design for pseudo‐strain‐hardening fibre reinforced cementitious composites. Mater Struct. 1995; 28 ( 10 ): 586 – 95.
dc.identifier.citedreferenceGraybeal B, Davis M. Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra‐high‐performance fiber‐reinforced concrete. ACI Mater J. 2008; 105 ( 6 ): 603.
dc.identifier.citedreferenceWille K, El‐Tawil S, Naaman AE. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP‐FRC) under direct tensile loading. Cem Concr Compos. 2014; 48: 53 – 66.
dc.identifier.citedreferenceLi VC. On engineered cementitious composites (SHCC). J Adv Concrete Technol. 2003; 1 ( 3 ): 215 – 30.
dc.identifier.citedreferenceZhang D, Yu J, Wu H, Jaworska B, Ellis BR, Li VC. Discontinuous micro‐fibers as intrinsic reinforcement for ductile engineered Cementitious composites (SHCC). Compos Part B: Eng. 2020; 184: 107741.
dc.identifier.citedreferenceLiu JC, Tan KH, Zhang D. Multi‐response optimization of post‐fire performance of strain hardening cementitious composite. Cem Concr Compos. 2017; 80: 80 – 90.
dc.identifier.citedreferenceMeng D, Huang T, Zhang YX, Lee CK. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA‐ECC) using local ingredients. Construct Build Mater. 2017; 141: 259 – 70.
dc.identifier.citedreferenceDing Y, Yu JT, Yu KQ, Xu SL. Basic mechanical properties of ultra‐high ductility cementitious composites: from 40 MPa to 120 MPa. Compos Struct. 2018; 185: 634 – 45.
dc.identifier.citedreferenceDing Y, Liu JP, Bai YL. Linkage of multi‐scale performances of nano‐CaCO 3 modified ultra‐high performance engineered cementitious composites (HS‐SHCC). Construct Build Mater. 2020; 234: 117418.
dc.identifier.citedreferenceDing Y, Yu KQ, Mao WH. Compressive performance of all‐grade engineered cementitious composites: experiment and theoretical model. Constr Build Mater. 2020; 244: 118357.
dc.identifier.citedreferenceLi LZ, Bai Y, Yu KQ, Yu JT, Lu ZD. Reinforced high‐strength engineered cementitious composite (SHCC) columns under SHCCentric compression: experiment and theoretical model. Eng Struct. 2019; 198: 109541.
dc.identifier.citedreferenceLi LZ, Cai ZW, Yu KQ, Zhang YX, Ding Y. Performance‐based design of all‐grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa. Cem Concr Compos. 2019; 97: 202 – 17.
dc.identifier.citedreferenceLu Z, Yin R, Yao J, Leung CK. Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of strain‐hardening cementitious composites. Compos Part B Eng. 2019; 177: 107446.
dc.identifier.citedreferenceRanade R, Li VC, Stults MD, Heard WF, Rushing TS. Composite properties of high‐strength, high‐ductility concrete. ACI Mater J. 2013; 110 ( 4 ): 413 – 32.
dc.identifier.citedreferenceYu KQ, Ding Y, Liu JP, Bai YL. Energy dissipation characteristics of all‐grade polyethylene fiber‐reinforced engineered cementitious composites (PE‐SHCC). Cem Concr Compos. 2020; 106: 103459.
dc.identifier.citedreferenceChen J, Kou SC, Poon CS. Hydration and properties of nano‐TiO 2 blended cement composites. Cem Concr Compos. 2012; 34 ( 5 ): 642 – 9.
dc.identifier.citedreferenceLi H, Xiao HG, Yuan J, Ou J. Microstructure of cement mortar with nano‐particles. Compos Part B Eng. 2004; 35 ( 2 ): 185 – 9.
dc.identifier.citedreferenceJo BW, Kim CH, Tae GH, Park JB. Characteristics of cement mortar with nano‐SiO 2 particles. Construct Build Mater. 2007; 21 ( 6 ): 1351 – 5.
dc.identifier.citedreferenceSenff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL. Effect of nano‐silica on rheology and fresh properties of cement pastes and mortars. Construct Build Mater. 2009; 23 ( 7 ): 2487 – 91.
dc.identifier.citedreferenceSenff L, Hotza D, Repette WL, Ferreira VM, Labrincha JA. Mortars with nano‐SiO 2 and micro‐SiO 2 investigated by experimental design. Construct Build Mater. 2010; 24 ( 8 ): 1432 – 7.
dc.identifier.citedreferenceHaruehansapong S, Pulngern T, Chucheepsakul S. Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano‐SiO 2. Construct Build Mater. 2014; 50: 471 – 7.
dc.identifier.citedreferenceQing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano‐SiO2 addition on properties of hardened cement paste as compared with silica fume. Construct Build Mater. 2007; 21 ( 3 ): 539 – 45.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.