Show simple item record

Mechanistic support for increased primary production around artificial reefs

dc.contributor.authorEsquivel, Kenzo E.
dc.contributor.authorHesselbarth, Maximilian H. K.
dc.contributor.authorAllgeier, Jacob E.
dc.date.accessioned2022-09-26T16:02:13Z
dc.date.available2023-10-26 12:02:11en
dc.date.available2022-09-26T16:02:13Z
dc.date.issued2022-09
dc.identifier.citationEsquivel, Kenzo E.; Hesselbarth, Maximilian H. K.; Allgeier, Jacob E. (2022). "Mechanistic support for increased primary production around artificial reefs." Ecological Applications 32(6): n/a-n/a.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/174782
dc.description.abstractUnderstanding factors controlling primary production is fundamental for the protection, management, and restoration of ecosystems. Tropical seagrass ecosystems are among the most productive ecosystems worldwide, yielding tremendous services for society. Yet they are also among the most impaired from anthropogenic stressors, prompting calls for ecosystem‐based restoration approaches. Artificial reefs (ARs) are commonly applied in coastal marine ecosystems to rebuild failing fisheries and have recently gained attention for their potential to promote carbon sequestration. Nutrient hotspots formed via excretion from aggregating fishes have been empirically shown to enhance local primary production around ARs in seagrass systems. Yet, if and how increased local production affects primary production at ecosystem scale remains unclear, and empirical tests are challenging. We used a spatially explicit individual‐based simulation model that combined a data‐rich single‐nutrient primary production model for seagrass and bioenergetics models for fish to test how aggregating fish on ARs affect seagrass primary production at patch and ecosystem scales. Specifically, we tested how the aggregation of fish alters (i) ecosystem seagrass primary production at varying fish densities and levels of ambient nutrient availability and (ii) the spatial distribution of seagrass primary production. Comparing model ecosystems with equivalent nutrient levels, we found that when fish aggregate around ARs, ecosystem‐scale primary production is enhanced synergistically. This synergistic increase in production was caused by nonlinear dynamics associated with nutrient uptake and biomass allocation that enhances aboveground primary production more than belowground production. Seagrass production increased near the AR and decreased in areas away from the AR, despite marginal reductions in seagrass biomass at the ecosystem level. Our simulation’s findings that ARs can increase ecosystem production provide novel support for ARs in seagrass ecosystems as an effective means to promote (i) fishery restoration (increased primary production can increase energy input to the food web) and (ii) carbon sequestration, via higher rates of primary production. Although our model represents a simplified, closed seagrass system without complex trophic interactions, it nonetheless provides an important first step in quantifying ecosystem‐level implications of ARs as a tool for ecological restoration.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherbiogeochemical hotspot
dc.subject.othercoastal marine ecosystems
dc.subject.otherecosystem productivity
dc.subject.otherexcretion
dc.subject.otherfish
dc.subject.otherHaemulon plumeria
dc.subject.otherindividual‐based simulation model
dc.subject.otherseagrass
dc.subject.otherThalassia testudinum
dc.subject.othernutrient
dc.subject.otheragent‐based simulation model
dc.titleMechanistic support for increased primary production around artificial reefs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174782/1/eap2617_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174782/2/eap2617.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174782/3/eap2617-sup-0001-Appendix_S1.pdf
dc.identifier.doi10.1002/eap.2617
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceMcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, and B. R. Silliman. 2011. “ A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2.” Frontiers in Ecology and the Environment, 9 ( 10 ), 552–560. Portico. https://doi.org/10.1890/110004
dc.identifier.citedreferenceLayman, C. A., J. E. Allgeier, L. A. Yeager, and E. W. Stoner. 2013. “ Thresholds of Ecosystem Response to Nutrient Enrichment from Fish Aggregations.” Ecology 94 ( 2 ): 530 – 6. https://doi.org/10.1890/12-0705.1.
dc.identifier.citedreferenceLee, K.‐S., and K. H. Dunton. 1999. “ Inorganic Nitrogen Acquisition in the Seagrass Thalassia testudinum: Development of a Whole‐Plant Nitrogen Budget.” Limnology and Oceanography 44 ( 5 ): 1204 – 15. https://doi.org/10.4319/lo.1999.44.5.1204.
dc.identifier.citedreferenceLindeman, R. L. 1942. “ The Trophic‐Dynamic Aspect of Ecology.” Ecology 23 ( 4 ): 399 – 417. https://doi.org/10.2307/1930126.
dc.identifier.citedreferenceLotze, H. K. 2006. “ Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas.” Science 312 ( 5781 ): 1806 – 9. https://doi.org/10.1126/science.1128035.
dc.identifier.citedreferenceMarbà, N., A. Arias‐Ortiz, P. Masqué, G. A. Kendrick, I. Mazarrasa, G. R. Bastyan, J. Garcia‐Orellana, and C. M. Duarte. 2015. “ Impact of Seagrass Loss and Subsequent Revegetation on Carbon Sequestration and Stocks.” Journal of Ecology 103 ( 2 ): 296 – 302. https://doi.org/10.1111/1365-2745.12370.
dc.identifier.citedreferenceMcIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor, and S. A. Thomas. 2008. “ Fish Distributions and Nutrient Cycling in Streams: Can Fish Create Biogeochemical Hotspots? ” Ecology 89 ( 8 ): 2335 – 46. https://doi.org/10.1890/07-1552.1.
dc.identifier.citedreferenceMcKay, M. D., R. J. Beckman, and W. J. Conover. 1979. “ A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code.” Technometrics 21 ( 2 ): 239. https://doi.org/10.2307/1268522.
dc.identifier.citedreferenceOsenberg, C. 2002. “ A Quantitative Framework to Evaluate the Attraction‐Production Controversy.” ICES Journal of Marine Science 59 ( October ): S214 – 21. https://doi.org/10.1006/jmsc.2002.1222.
dc.identifier.citedreferencePianosi, F., K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephenson, and T. Wagener. 2016. “ Sensitivity Analysis of Environmental Models: A Systematic Review with Practical Workflow.” Environmental Modelling & Software 79: 214 – 32. https://doi.org/10.1016/j.envsoft.2016.02.008.
dc.identifier.citedreferencePickering, H., and D. Whitmarsh. 1997. “ Artificial Reefs and Fisheries Exploitation: A Review of the ‘Attraction Versus Production’ Debate, the Influence of Design and its Significance for Policy.” Fisheries Research 31 ( 1–2 ): 39 – 59. https://doi.org/10.1016/S0165-7836(97)00019-2.
dc.identifier.citedreferencePoorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. “ Biomass Allocation to Leaves, Stems and Roots: Meta‐Analyses of Interspecific Variation and Environmental Control.” New Phytologist 193 ( 1 ): 30 – 50. https://doi.org/10.1111/j.1469-8137.2011.03952.x.
dc.identifier.citedreferencePowers, S. P., J. H. Grabowski, C. H. Peterson, and W. J. Lindberg. 2003. “ Estimating Enhancement of Fish Production by Offshore Artificial Reefs: Uncertainty Exhibited by Divergent Scenarios.” Marine Ecology Progress Series 264: 265 – 77. https://doi.org/10.3354/meps264265.
dc.identifier.citedreferenceR Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. www.r-project.org.
dc.identifier.citedreferenceRyther, J. H. 1969. “ Photosynthesis and Fish Production in the Sea.” Science 166 ( 3901 ): 72 – 6. https://doi.org/10.1126/science.166.3901.72.
dc.identifier.citedreferenceSadovy, Y., and M. Domeier. 2005. “ Are Aggregation‐Fisheries Sustainable? Reef Fish Fisheries as a Case Study.” Coral Reefs 24 ( 2 ): 254 – 62. https://doi.org/10.1007/s00338-005-0474-6.
dc.identifier.citedreferenceSale, P. F. 2008. “ Management of Coral Reefs: Where we Have Gone Wrong and What we Can Do about it.” Marine Pollution Bulletin 56 ( 5 ): 805 – 9. https://doi.org/10.1016/j.marpolbul.2008.04.009.
dc.identifier.citedreferenceSchreck, C. B., and P. B. Moyle, eds. 1990. Methods for Fish Biology. Bethesda, MD: American Fisheries Society.
dc.identifier.citedreferenceSeaman, W. 2019. “ Artificial Reefs.” In Encyclopedia of Ocean Sciences, 3rd ed., edited by J. K. Cochran, H. J. Bokuniewicz, and P. L. Yager, 662 – 70. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-409548-9.11617-3.
dc.identifier.citedreferenceShantz, A. A., M. C. Ladd, E. Schrack, and D. E. Burkepile. 2015. “ Fish‐Derived Nutrient Hotspots Shape Coral Reef Benthic Communities.” Ecological Applications 25 ( 8 ): 2142 – 52. https://doi.org/10.1890/14-2209.1.
dc.identifier.citedreferenceShipley, B., and D. Meziane. 2002. “ The Balanced‐Growth Hypothesis and the Allometry of Leaf and Root Biomass Allocation.” Functional Ecology 16 ( 3 ): 326 – 31. https://doi.org/10.1046/j.1365-2435.2002.00626.x.
dc.identifier.citedreferenceSmith, A. D. M., E. J. Fulton, A. J. Hobday, D. C. Smith, and P. Shoulder. 2007. “ Scientific Tools to Support the Practical Implementation of Ecosystem‐Based Fisheries Management.” ICES Journal of Marine Science 64 ( 4 ): 633 – 9. https://doi.org/10.1093/icesjms/fsm041.
dc.identifier.citedreferenceSobol, I. M., S. Tarantola, D. Gatelli, S. S. Kucherenko, and W. Mauntz. 2007. “ Estimating the Approximation Error when Fixing Unessential Factors in Global Sensitivity Analysis.” Reliability Engineering & System Safety 92 ( 7 ): 957 – 60. https://doi.org/10.1016/j.ress.2006.07.001.
dc.identifier.citedreferenceStone, R. B., L. M. Sprague, J. M. McGurrin, and W. Seaman. 1991. “ Artificial Habitats of the World: Synopsis and Major Trends.” In Artificial Habitats for Marine and Freshwater Fisheries, edited by W. Seaman and L. M. Sprague, 31 – 60. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-08-057117-1.50008-1.
dc.identifier.citedreferenceThiele, J. C., W. Kurth, and V. Grimm. 2014. “ Facilitating Parameter Estimation and Sensitivity Analysis of Agent‐Based Models: A Cookbook Using NetLogo and R.” Journal of Artificial Societies and Social Simulation 17 ( 3 ): 11. https://doi.org/10.18564/jasss.2503.
dc.identifier.citedreferenceVan Dam, B. R., M. A. Zeller, C. Lopes, A. R. Smyth, M. E. Böttcher, C. L. Osburn, T. Zimmerman, D. Pröfrock, J. W. Fourqurean, and H. Thomas. 2021. “ Calcification‐Driven CO 2 Emissions Exceed ‘Blue Carbon’ Sequestration in a Carbonate Seagrass Meadow.” Science Advances 7 ( 51 ): eabj1372. https://doi.org/10.1126/sciadv.abj1372.
dc.identifier.citedreferenceWatkins, K. S., and K. A. Rose. 2013. “ Evaluating the Performance of Individual‐Based Animal Movement Models in Novel Environments.” Ecological Modelling 250: 214 – 34. https://doi.org/10.1016/j.ecolmodel.2012.11.011.
dc.identifier.citedreferenceWilson, J., C. W. Osenberg, C. M. St, C. A. W. Mary, and W. J. Lindberg. 2001. “ Artificial Reefs, the Attraction‐Production Issue, and Density Dependence in Marine Ornamental Fishes.” Aquarium Sciences and Conservation 3 ( 1/3 ): 95 – 105. https://doi.org/10.1023/A:1011343312031.
dc.identifier.citedreferenceWilliams, J. J., Y. P. Papastamatiou, J. E. Caselle, D. Bradley, and D. M. P. Jacoby. 2018. “ Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll.” Proceedings of the Royal Society B: Biological Sciences, 285 ( 1875 ), 20172456. https://doi.org/10.1098/rspb.2017.2456
dc.identifier.citedreferenceAllgeier, J. E., T. C. Adam, and D. E. Burkepile. 2017. “ The Importance of Individual and Species‐Level Traits for Trophic Niches among Herbivorous Coral Reef Fishes.” Proceedings of the Royal Society B: Biological Sciences 284 ( 1856 ): 20170307. https://doi.org/10.1098/rspb.2017.0307.
dc.identifier.citedreferenceAllgeier, J. E., T. J. Cline, T. E. Walsworth, G. Wathen, C. A. Layman, and D. E. Schindler. 2020. “ Individual Behavior Drives Ecosystem Function and the Impacts of Harvest.” Science Advances 6 ( 9 ): eaax8329. https://doi.org/10.1126/sciadv.aax8329.
dc.identifier.citedreferenceAllgeier, J. E., C. A. Layman, C. G. Montaña, E. Hensel, R. Appaldo, and A. D. Rosemond. 2018. “ Anthropogenic Versus Fish‐Derived Nutrient Effects on Seagrass Community Structure and Function.” Ecology 99 ( 8 ): 1792 – 801. https://doi.org/10.1002/ecy.2388.
dc.identifier.citedreferenceAllgeier, J. E., S. J. Wenger, A. D. Rosemond, D. E. Schindler, and C. A. Layman. 2015. “ Metabolic Theory and Taxonomic Identity Predict Nutrient Recycling in a Diverse Food Web.” Proceedings of the National Academy of Sciences 112 ( 20 ): E2640 – 7. https://doi.org/10.1073/pnas.1420819112.
dc.identifier.citedreferenceAllgeier, J. E., L. A. Yeager, and C. A. Layman. 2013. “ Consumers Regulate Nutrient Limitation Regimes and Primary Production in Seagrass Ecosystems.” Ecology 94 ( 2 ): 521 – 9. https://doi.org/10.1890/12-1122.1.
dc.identifier.citedreferenceAllgeier, J. E., M. A. Andskog, E. Hensel, R. Appaldo, C. Layman, and D. W. Kemp. 2020. “ Rewiring Coral: Anthropogenic Nutrients Shift Diverse Coral–Symbiont Nutrient and Carbon Interactions toward Symbiotic Algal Dominance.” Global Change Biology 26 ( 10 ): 5588 – 601. https://doi.org/10.1111/gcb.15230.
dc.identifier.citedreferenceAppeldoorn, R. S., A. Aguilar‐Perera, B. L. K. Bouwmeester, G. D. Dennis, R. L. Hill, W. Merten, C. W. Recksiek, and S. J. Williams. 2009. “ Movement of Fishes (Grunts: Haemulidae) across the Coral Reef Seascape: A Review of Scales, Patterns and Processes.” Caribbean Journal of Science 45 ( 2–3 ): 304 – 16. https://doi.org/10.18475/cjos.v45i2.a16.
dc.identifier.citedreferenceArkema, K. K., S. C. Abramson, and B. M. Dewsbury. 2006. “ Marine Ecosystem‐Based Management: From Characterization to Implementation.” Frontiers in Ecology and the Environment 4 ( 10 ): 525 – 32. https://doi.org/10.1890/1540-9295(2006)4[525:MEMFCT]2.0.CO;2.
dc.identifier.citedreferenceArmstrong, J. B., and D. E. Schindler. 2011. “ Excess Digestive Capacity in Predators Reflects a Life of Feast and Famine.” Nature 476 ( 7358 ): 84 – 7. https://doi.org/10.1038/nature10240.
dc.identifier.citedreferenceAtkinson, C. L., C. C. Vaughn, K. J. Forshay, and J. T. Cooper. 2013. “ Aggregated Filter‐Feeding Consumers Alter Nutrient Limitation: Consequences for Ecosystem and Community Dynamics.” Ecology 94 ( 6 ): 1359 – 69. https://doi.org/10.1890/12-1531.1.
dc.identifier.citedreferenceBaine, M. 2001. “ Artificial Reefs: A Review of their Design, Application, Management and Performance.” Ocean & Coastal Management 44 ( 3–4 ): 241 – 59. https://doi.org/10.1016/S0964-5691(01)00048-5.
dc.identifier.citedreferenceBohnsack, J. A. 1989. “ Are High Densities of Fishes at Artificial Reefs the Result of Habitat Limitation or Behavioral Preference? ” Bulletin of Marine Science 44 ( 2 ): 631 – 45.
dc.identifier.citedreferenceBohnsack, J. A., D. L. Johnson, and R. F. Ambrose. 1991. “ Ecology of Artificial Reef Habitats and Fishes.” In Artificial Habitats for Marine and Freshwater Fisheries, edited by W. Seaman and L. M. Sprague, 61 – 107. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-08-057117-1.50009-3.
dc.identifier.citedreferenceBoström, C., and J. Mattila. 1999. “ The Relative Importance of Food and Shelter for Seagrass‐Associated Invertebrates: A Latitudinal Comparison of Habitat Choice by Isopod Grazers.” Oecologia 120 ( 1 ): 162 – 70. https://doi.org/10.1007/s004420050845.
dc.identifier.citedreferenceBoyer, E. W., R. W. Howarth, J. N. Galloway, F. J. Dentener, P. A. Green, and C. J. Vörösmarty. 2006. “ Riverine Nitrogen Export from the Continents to the Coasts.” Global Biogeochemical Cycles 20 ( 1 ): 1 – 9. https://doi.org/10.1029/2005GB002537.
dc.identifier.citedreferenceBuchan, K. C. 2000. “ The Bahamas.” Marine Pollution Bulletin 41 ( 1–6 ): 94 – 111. https://doi.org/10.1016/S0025-326X(00)00104-1.
dc.identifier.citedreferenceBuesa, R. J. 1974. “ Population and Biological Data on Turtle Grass ( Thalassia testudinum König, 1805) on the Northwestern Cuban Shelf.” Aquaculture 4 ( January ): 207 – 26. https://doi.org/10.1016/0044-8486(74)90035-0.
dc.identifier.citedreferenceCarr, M. H., and M. A. Hixon. 1997. “ Artificial Reefs: The Importance of Comparisons with Natural Reefs.” Fisheries 22 ( 4 ): 28 – 33. https://doi.org/10.1577/1548-8446(1997)022<0028:ARTIOC>2.0.CO;2.
dc.identifier.citedreferenceChapin, F. S. 1980. “ The Mineral Nutrition of Wild Plants.” Annual Review of Ecology and Systematics 11 ( 1 ): 233 – 60. https://doi.org/10.1146/annurev.es.11.110180.001313.
dc.identifier.citedreferenceClaisse, J. T., D. J. Pondella, M. Love, L. A. Zahn, C. M. Williams, J. P. Williams, and A. S. Bull. 2014. “ Oil Platforms off California Are among the Most Productive Marine Fish Habitats Globally.” Proceedings of the National Academy of Sciences 111 ( 43 ): 15462 – 7. https://doi.org/10.1073/pnas.1411477111.
dc.identifier.citedreferenceDavison, A. C., and D. V. Hinkley. 1997. Bootstrap Methods and their Application. New York, NY: Cambridge University Press.
dc.identifier.citedreferencede la Morinière, E. C., B. J. A. Pollux, I. Nagelkerken, M. A. Hemminga, A. H. L. Huiskes, and G. van der Velde. 2003. “ Ontogenetic Dietary Changes of Coral Reef Fishes in the Mangrove‐Seagrass‐Reef Continuum: Stable Isotopes and Gut‐Content Analysis.” Marine Ecology Progress Series 246 ( January ): 279 – 89. https://doi.org/10.3354/meps246279.
dc.identifier.citedreferenceDeAngelis, D. L. 1992. Dynamics of Nutrient Cycling and Food Webs. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-2342-6.
dc.identifier.citedreferenceDeAngelis, D. L., and V. Grimm. 2014. “ Individual‐Based Models in Ecology after Four Decades.” F1000Prime Reports 6 ( 39 ): 1 – 6. https://doi.org/10.12703/P6-39.
dc.identifier.citedreferenceDeslauriers, D., S. R. Chipps, J. E. Breck, J. A. Rice, and C. P. Madenjian. 2017. “ Fish Bioenergetics 4.0: An R‐Based Modeling Application.” Fisheries 42 ( 11 ): 586 – 96. https://doi.org/10.1080/03632415.2017.1377558.
dc.identifier.citedreferenceEfron, B., and R. Tibshirani. 1986. “ Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy.” Statistical Science 1 ( 1 ): 54 – 75. https://doi.org/10.1214/ss/1177013815.
dc.identifier.citedreferenceFourqurean, J. W., C. M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M. A. Mateo, E. T. Apostolaki, et al. 2012. “ Seagrass Ecosystems as a Globally Significant Carbon Stock.” Nature Geoscience 5 ( 7 ): 505 – 9. https://doi.org/10.1038/ngeo1477.
dc.identifier.citedreferenceFroese, R., and D. Pauly. 2019. “ FishBase. World Wide Web Electronic Publication.” December 2019. www.fishbase.org.
dc.identifier.citedreferenceGrainger, T. N., A. Senthilnathan, P.‐J. Ke, M. A. Barbour, N. T. Jones, J. P. DeLong, S. P. Otto, et al. 2022. “ An Empiricist’s Guide to Using Ecological Theory.” The American Naturalist 199 ( 1 ): 1 – 20. https://doi.org/10.1086/717206.
dc.identifier.citedreferenceGreen, A. L., A. P. Maypa, G. R. Almany, K. L. Rhodes, R. Weeks, R. A. Abesamis, M. G. Gleason, P. J. Mumby, and A. T. White. 2015. “ Larval Dispersal and Movement Patterns of Coral Reef Fishes, and Implications for Marine Reserve Network Design: Connectivity and Marine Reserves.” Biological Reviews 90 ( 4 ): 1215 – 47. https://doi.org/10.1111/brv.12155.
dc.identifier.citedreferenceGreen, E. P., and F. T. Short, eds. 2003. World Atlas of Seagrasses. Berkeley, CA: University of California Press.
dc.identifier.citedreferenceGrimm, V., S. F. Railsback, C. E. Vincenot, U. Berger, D. L. Cara Gallagher, B. E. DeAngelis, et al. 2020. “ The ODD Protocol for Describing Agent‐Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism.” Journal of Artificial Societies and Social Simulation 23 ( 2 ): 7. https://doi.org/10.18564/jasss.4259.
dc.identifier.citedreferenceGrimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.‐H. Thulke, J. Weiner, T. Wiegand, and D. L. DeAngelis. 2005. “ Pattern‐Oriented Modeling of Agent‐Based Complex Systems: Lessons from Ecology.” Science 310 ( 5750 ): 987 – 91. https://doi.org/10.1126/science.1116681.
dc.identifier.citedreferenceGrossman, G. D., G. P. Jones, and W. Seaman. 1997. “ Do Artificial Reefs Increase Regional Fish Production? A Review of Existing Data.” Fisheries 22 ( 4 ): 17 – 23. https://doi.org/10.1577/1548-8446(1997)022<0017:DARIRF>2.0.CO;2.
dc.identifier.citedreferenceHarborne, A. R., J. D. Selwyn, J. M. Lawson, and M. Gallo. (2016). “ Environmental drivers of diurnal visits by transient predatory fishes to Caribbean patch reefs.” Journal of Fish Biology, 90 ( 1 ), 265–282. Portico. https://doi.org/10.1111/jfb.13180
dc.identifier.citedreferenceHalpern, B. S., C. Longo, D. Hardy, K. L. McLeod, J. F. Samhouri, S. K. Katona, K. Kleisner, et al. 2012. “ An Index to Assess the Health and Benefits of the Global Ocean.” Nature 488 ( 7413 ): 615 – 20. https://doi.org/10.1038/nature11397.
dc.identifier.citedreferenceHalpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, et al. 2008. “ A Global Map of Human Impact on Marine Ecosystems.” Science 319 ( 5865 ): 948 – 52. https://doi.org/10.1126/science.1149345.
dc.identifier.citedreferenceHanson, P. C., T. B. Johnson, D. E. Schindler, and J. F. Kitchell. 1997. Fish Bioenergetics 3.0 for Windows Manual.” Manual. Madison, WI: University of Wisconsin‐Madison, Centre for Limnology.
dc.identifier.citedreferenceHeck, K. L. 1979. “ Some Determinants of the Composition and Abundance of Motile Macroinvertebrate Species in Tropical and Temperate Turtlegrass ( Thalassia testudinum ) Meadows.” Journal of Biogeography 6 ( 2 ): 183. https://doi.org/10.2307/3038051.
dc.identifier.citedreferenceHedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. “ The Meta‐Analysis of Response Ratios in Experimental Ecology.” Ecology 80 ( 4 ): 1150 – 6. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2.
dc.identifier.citedreferenceHesselbarth, M. 2022. “ Allgeier‐Lab/Esquivel_etal_2021_EcolAppl: Submission_EcolAppl (v1.0).” Zenodo. https://doi.org/10.5281/zenodo.5847403.
dc.identifier.citedreferenceHesselbarth, M., K. Munsterman, and Actions‐User. 2022. “ Allgeier‐Lab/arrR: Accepted Model Version for Publication (Hotfix) (v1.1‐2).” Zenodo. https://doi.org/10.5281/zenodo.5910977.
dc.identifier.citedreferenceHolsman, K. K., A. C. Haynie, A. B. Hollowed, J. C. P. Reum, K. Aydin, A. J. Hermann, W. Cheng, et al. 2020. “ Ecosystem‐Based Fisheries Management Forestalls Climate‐Driven Collapse.” Nature Communications 11 ( 1 ): 4579. https://doi.org/10.1038/s41467-020-18300-3.
dc.identifier.citedreferenceHowell, D., A. M. Schueller, J. W. Bentley, A. Buchheister, D. Chagaris, M. Cieri, K. Drew, et al. 2021. “ Combining Ecosystem and Single‐Species Modeling to Provide Ecosystem‐Based Fisheries Management Advice within Current Management Systems.” Frontiers in Marine Science 7 ( January ): 607831. https://doi.org/10.3389/fmars.2020.607831.
dc.identifier.citedreferenceKennedy, H., J. Beggins, C. M. Duarte, J. W. Fourqurean, M. Holmer, N. Marbà, and J. J. Middelburg. 2010. “ Seagrass Sediments as a Global Carbon Sink: Isotopic Constraints.” Global Biogeochemical Cycles 24 ( 4 ): GB4026. https://doi.org/10.1029/2010GB003848.
dc.identifier.citedreferenceLayman, C. A., and J. E. Allgeier. 2020. “ An Ecosystem Ecology Perspective on Artificial Reef Production.” Journal of Applied Ecology 57 ( 11 ): 2139 – 48. https://doi.org/10.1111/1365-2664.13748.
dc.identifier.citedreferenceLayman, C. A., J. E. Allgeier, and C. G. Montaña. 2016. “ Mechanistic Evidence of Enhanced Production on Artificial Reefs: A Case Study in a Bahamian Seagrass Ecosystem.” Ecological Engineering 95 ( October ): 574 – 9. https://doi.org/10.1016/j.ecoleng.2016.06.109.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.