Show simple item record

Recent Technical Developments in ASL: A Review of the State of the Art

dc.contributor.authorHernandez-Garcia, Luis
dc.contributor.authorAramendía-Vidaurreta, Verónica
dc.contributor.authorBolar, Divya S.
dc.contributor.authorDai, Weiying
dc.contributor.authorFernández-Seara, Maria A.
dc.contributor.authorGuo, Jia
dc.contributor.authorMadhuranthakam, Ananth J.
dc.contributor.authorMutsaerts, Henk
dc.contributor.authorPetr, Jan
dc.contributor.authorQin, Qin
dc.contributor.authorSchollenberger, Jonas
dc.contributor.authorSuzuki, Yuriko
dc.contributor.authorTaso, Manuel
dc.contributor.authorThomas, David L.
dc.contributor.authorOsch, Matthias J. P.
dc.contributor.authorWoods, Joseph
dc.contributor.authorZhao, Moss Y.
dc.contributor.authorYan, Lirong
dc.contributor.authorWang, Ze
dc.contributor.authorZhao, Li
dc.contributor.authorOkell, Thomas W.
dc.date.accessioned2022-09-26T16:02:20Z
dc.date.available2023-12-26 12:02:17en
dc.date.available2022-09-26T16:02:20Z
dc.date.issued2022-11
dc.identifier.citationHernandez-Garcia, Luis ; Aramendía-Vidaurreta, Verónica ; Bolar, Divya S.; Dai, Weiying; Fernández-Seara, Maria A. ; Guo, Jia; Madhuranthakam, Ananth J.; Mutsaerts, Henk; Petr, Jan; Qin, Qin; Schollenberger, Jonas; Suzuki, Yuriko; Taso, Manuel; Thomas, David L.; Osch, Matthias J. P.; Woods, Joseph; Zhao, Moss Y.; Yan, Lirong; Wang, Ze; Zhao, Li; Okell, Thomas W. (2022). "Recent Technical Developments in ASL: A Review of the State of the Art." Magnetic Resonance in Medicine 88(5): 2021-2042.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/174784
dc.description.abstractThis review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple- timepoint ASL, body ASL, and clinical ASL recommendations.
dc.publisherSpringer International Publishing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMR imaging
dc.subject.othertechnical advances
dc.subject.othervascular imaging
dc.subject.otherperfusion
dc.subject.otherarterial spin labeling
dc.subject.otherCBF
dc.titleRecent Technical Developments in ASL: A Review of the State of the Art
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174784/1/mrm29381_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174784/2/mrm29381.pdf
dc.identifier.doi10.1002/mrm.29381
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceNielsen J- F, Hernandez- Garcia L. Functional perfusion imaging using pseudocontinuous arterial spin labeling with low- flip- angle segmented 3D spiral readouts. Magn Reson Med. 2013; 69: 382 - 390.
dc.identifier.citedreferenceGaliano A, Mengual E, García de Eulate R, et al. Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav. 2020; 14: 436 - 450.
dc.identifier.citedreferencevan Laar PJ, Hendrikse J, Golay X, Lu H, van Osch MJP, van der Grond J. In vivo flow territory mapping of major brain feeding arteries. Neuroimage. 2006; 29: 136 - 144.
dc.identifier.citedreferenceHelle M, Rüfer S, van Osch MJP, et al. Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. J Magn Reson Imaging. 2013; 38: 496 - 503.
dc.identifier.citedreferenceHendrikse J, van der Grond J, Lu H, van Zijl PCM, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke. 2004; 35: 882 - 887.
dc.identifier.citedreferenceGolay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med. 2005; 53: 15 - 21.
dc.identifier.citedreferencevan Osch MJP, Hendrikse J, Golay X, Bakker CJG, van der Grond J. Non- invasive visualization of collateral blood flow patterns of the circle of Willis by dynamic MR angiography. Med Image Anal. 2006; 10: 59 - 70.
dc.identifier.citedreferenceWerner R, Norris DG, Alfke K, Mehdorn HM, Jansen O. Continuous artery- selective spin labeling (CASSL). Magn Reson Med. 2005; 53: 1006 - 1012.
dc.identifier.citedreferenceHelle M, Rüfer S, Alfke K, Jansen O, Norris DG. Perfusion territory imaging of intracranial branching arteries - optimization of continuous artery- selective spin labeling (CASSL). NMR Biomed. 2011; 24: 404 - 412.
dc.identifier.citedreferenceDai W, Robson PM, Shankaranarayanan A, Alsop DC. Modified pulsed continuous arterial spin labeling for labeling of a single artery. Magn Reson Med. 2010; 64: 975 - 982.
dc.identifier.citedreferenceHelle M, Norris DG, Rüfer S, Alfke K, Jansen O, van Osch MJP. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med. 2010; 64: 777 - 786.
dc.identifier.citedreferenceRichter V, Helle M, van Osch MJP, et al. MR imaging of individual perfusion reorganization using superselective pseudocontinuous arterial spin- labeling in patients with complex extracranial steno- occlusive disease. Am J Neuroradiol. 2017; 38: 703 - 711.
dc.identifier.citedreferenceGünther M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med. 2006; 56: 671 - 675.
dc.identifier.citedreferenceWong EC. Vessel- encoded arterial spin- labeling using pseudocontinuous tagging. Magn Reson Med. 2007; 58: 1086 - 1091.
dc.identifier.citedreferenceWong EC, Guo J. Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. MAGMA. 2012; 25: 95 - 101.
dc.identifier.citedreferenceGünther M. Highly efficient accelerated acquisition of perfusion inflow series by cycled arterial spin labeling. In Proceedings of the 15th Annual Meeting of ISMRM, Berlin, Germany, 2007. p. 380.
dc.identifier.citedreferenceBerry ESK, Jezzard P, Okell TW. An optimized encoding scheme for planning vessel- encoded Pseudocontinuous arterial spin labeling. Magn Reson Med. 2015; 74: 1248 - 1256.
dc.identifier.citedreferenceGevers S, Bokkers RP, Hendrikse J, et al. Robustness and reproducibility of flow territories defined by planning- free vessel- encoded pseudocontinuous arterial spin- labeling. AJNR Am J Neuroradiol. 2012; 33: E21 - E25.
dc.identifier.citedreferenceHartkamp NS, Helle M, Chappell MA, et al. Validation of planning- free vessel- encoded pseudo- continuous arterial spin labeling MR imaging as territorial- ASL strategy by comparison to super- selective p- CASL MRI: validation of planning- free vessel- encoded p- CASL. Magn Reson Med. 2014; 71: 2059 - 2070.
dc.identifier.citedreferenceSuzuki Y, van Osch MJP, Fujima N, Okell TW. Optimization of the spatial modulation function of vessel- encoded pseudo- continuous arterial spin labeling and its application to dynamic angiography. Magn Reson Med. 2019; 81: 410 - 423.
dc.identifier.citedreferenceChappell MA, Okell TW, Jezzard P, Woolrich MW. A general framework for the analysis of vessel encoded arterial spin labeling for vascular territory mapping: a general framework for VE- ASL analysis. Magn Reson Med. 2010; 64: 1529 - 1539.
dc.identifier.citedreferenceWu B, Wang X, Guo J, et al. Collateral circulation imaging: MR perfusion territory arterial spin- labeling at 3T. AJNR Am J Neuroradiol. 2008; 29: 1855 - 1860.
dc.identifier.citedreferenceOkell TW, Chappell MA, Woolrich MW, Günther M, Feinberg DA, Jezzard P. Vessel- encoded dynamic magnetic resonance angiography using arterial spin labeling: vessel- encoded MR angiography using ASL. Magn Reson Med. 2010; 64: 698 - 706.
dc.identifier.citedreferenceOkell TW, Garcia M, Chappell MA, Byrne JV, Jezzard P. Visualizing artery- specific blood flow patterns above the circle of Willis with vessel- encoded arterial spin labeling. Magn Reson Med. 2019; 81: 1595 - 1604.
dc.identifier.citedreferenceHinton GE, Osindero S, Teh Y- W. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18: 1527 - 1554.
dc.identifier.citedreferenceClement P, Castellaro M, Okell T, et al. ASL- BIDS, the brain imaging data structure extension for arterial spin labeling. MAGMA. 2021. doi: 10.31234/osf.io/e87y3
dc.identifier.citedreferenceRamasubbu R, Brown EC, Marcil LD, Talai AS, Forkert ND. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry Clin Neurosci. 2019; 73: 486 - 493.
dc.identifier.citedreferenceMutsaerts HJMM, Petr J, Groot P, et al. ExploreASL: An image processing pipeline for multi- center ASL perfusion MRI studies. Neuroimage. 2020; 219: 117031.
dc.identifier.citedreferenceTeeuwisse WM, Webb AG, Van Osch MJP. Arterial spin labeling at ultra- high field: all that glitters is not gold. Int J Imaging Syst Technol. 2010; 20: 62 - 70.
dc.identifier.citedreferencePfeuffer J, Adriany G, Shmuel A, et al. Perfusion- based high- resolution functional imaging in the human brain at 7 tesla. Magn Reson Med. 2002; 47: 903 - 911.
dc.identifier.citedreferenceFrancis ST, Bowtell R, Gowland PA. Modeling and optimization of look- locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume. Magn Reson Med. 2008; 59: 316 - 325.
dc.identifier.citedreferenceGardener AG, Jezzard P. Investigating white matter perfusion using optimal sampling strategy arterial spin labeling at 7 Tesla. Magn Reson Med. 2015; 73: 2243 - 2248.
dc.identifier.citedreferenceWang K, Shao X, Yan L, Ma SJ, Jin J, Wang DJJ. Optimization of adiabatic pulses for pulsed arterial spin labeling at 7 tesla: comparison with pseudo- continuous arterial spin labeling. Magn Reson Med. 2021; 85: 3227 - 3240.
dc.identifier.citedreferenceKashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, UludaÄ K. Sub- millimetre resolution laminar fMRI using arterial spin labelling in humans at 7 T. PLOS One. 2021; 16: e0250504.
dc.identifier.citedreferenceLuh WM, Talagala SL, Li TQ, Bandettini PA. Pseudo- continuous arterial spin labeling at 7 T for human brain: estimation and correction for off- resonance effects using a Prescan. Magn Reson Med. 2013; 69: 402 - 410.
dc.identifier.citedreferenceJahanian H, Noll DC, Hernandez- Garcia L. B0 field inhomogeneity considerations in pseudo- continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed. 2011; 24: 1202 - 1209.
dc.identifier.citedreferenceGhariq E, Teeuwisse WM, Webb AG, Osch MJPV. Feasibility of pseudocontinuous arterial spin labeling at 7 T with whole- brain coverage. Magn Reson Mater Phys Biol Med. 2012; 25: 83 - 93.
dc.identifier.citedreferenceTong Y, Jezzard P, Okell TW, Clarke WT. Improving PCASL at ultra- high field using a VERSE- guided parallel transmission strategy. Magn Reson Med. 2020; 84: 777 - 786.
dc.identifier.citedreferenceWang K, Ma SJ, Shao X, et al. Optimization of pseudo- continuous arterial spin labeling at 7T with parallel transmission B1 shimming. Magn Reson Med. 2022; 87: 249 - 262.
dc.identifier.citedreferenceConolly S, Nishimura D, Macovski A, Glover G. Variable- rate selective excitation. J Magn Reson. 1988; 1969: 440 - 458.
dc.identifier.citedreferenceZuo Z, Wang R, Zhuo Y, Xue R, Lawrence KSS, Wang DJJ. Turbo- FLASH based arterial spin labeled perfusion MRI at 7 T. PLoS One. 2013; 8: e66612.
dc.identifier.citedreferenceWang Y, Moeller S, Li X, et al. Simultaneous multi- slice turbo- FLASH imaging with CAIPIRINHA for whole brain distortion- free pseudo- continuous arterial spin labeling at 3 and 7T. Neuroimage. 2015; 113: 279 - 288.
dc.identifier.citedreferenceDetre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992; 23: 37 - 45.
dc.identifier.citedreferenceAlsop, D. C., Detre J. A., Golay X., et al. Recommended implementation of arterial spin- labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the european consortium for ASL in dementia. Magn Reson Med. 2015; 73: 102 - ; 116.
dc.identifier.citedreferenceWilliams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992; 89: 212 - 216.
dc.identifier.citedreferenceFeinberg DA, Beckett A, Chen L. Arterial spin labeling with simultaneous multi- slice echo planar imaging. Magn Reson Med. 2013; 70: 1500 - 1506.
dc.identifier.citedreferenceShao X, Wang Y, Moeller S, Wang DJJ. A constrained slice- dependent background suppression scheme for simultaneous multislice pseudo- continuous arterial spin labeling: a constrained slice- dependent BS scheme for SMS pCASL. Magn Reson Med. 2018; 79: 394 - 400.
dc.identifier.citedreferenceIvanov D, Poser BA, Huber L, Pfeuffer J, UludaÄ K. Optimization of simultaneous multislice EPI for concurrent functional perfusion and BOLD signal measurements at 7T: SMS EPI for functional perfusion and BOLD measurements at 7T. Magn Reson Med. 2017; 78: 121 - 129.
dc.identifier.citedreferenceLiang X, Connelly A, Tournier J- D, Calamante F. A variable flip angle- based method for reducing blurring in 3D GRASE ASL. Phys Med Biol. 2014; 59: 5559 - 5573.
dc.identifier.citedreferenceZhao L, Chang C- D, Alsop DC. Controlling T2 blurring in 3D RARE arterial spin labeling acquisition through optimal combination of variable flip angles and k- space filtering. Magn Reson Med. 2018; 80: 1391 - 1401.
dc.identifier.citedreferenceDuyn JH, Yang Y. Fast spiral magnetic resonance imaging with trapezoidal gradients. J Magn Reson. 1997; 128: 130 - 134.
dc.identifier.citedreferenceKang D, Yarach U, In MH, et al. The effect of spiral trajectory correction on pseudo- continuous arterial spin labeling with high- performance gradients on a compact 3T scanner. Magn Reson Med. 2020; 84: 192 - 205.
dc.identifier.citedreferencePipe JG, Menon P. Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med. 1999; 41: 179 - 186.
dc.identifier.citedreferenceLi Z, Schär M, Wang D, et al. Arterial spin labeled perfusion imaging using three- dimensional turbo spin echo with a distributed spiral- in/out trajectory. Magn Reson Med. 2016; 75: 266 - 273.
dc.identifier.citedreferenceWang Z, Fernández- Seara MA. 2D partially parallel imaging with k- space surrounding neighbors- based data reconstruction. Magn Reson Med. 2006; 56: 1389 - 1396.
dc.identifier.citedreferenceWang J, Wang Z, Aguirre GK, Detre JA. To smooth or not to smooth? ROC analysis of perfusion fMRI data. Magn Reson Imaging. 2005; 23: 75 - 81.
dc.identifier.citedreferenceFernández- Seara MA, Wang Z, Wang J, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med. 2005; 54: 1241 - 1247.
dc.identifier.citedreferenceVidorreta M, Wang Z, Chang YV, Wolk DA, Fernández- Seara MA, Detre JA. Whole- brain background- suppressed pCASL MRI with 1D- accelerated 3D RARE stack- of- spirals readout. PLOS One. 2017; 12: e0183762.
dc.identifier.citedreferenceChang YV, Vidorreta M, Wang Z, Detre JA. 3D- accelerated, stack- of- spirals acquisitions and reconstruction of arterial spin labeling MRI: 3D accelerated spiral ASL. Magn Reson Med. 2017; 78: 1405 - 1419.
dc.identifier.citedreferenceBoland M, Stirnberg R, Pracht ED, et al. Accelerated 3D- GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling. Magn Reson Med. 2018; 0: 2475 - 2484.
dc.identifier.citedreferenceSpann SM, Kazimierski KS, Aigner CS, Kraiger M, Bredies K, Stollberger R. Spatio- temporal TGV denoising for ASL perfusion imaging. Neuroimage. 2017; 157: 81 - 96.
dc.identifier.citedreferenceRobson PM, Madhuranthakam AJ, Smith MP, et al. Volumetric arterial spin- labeled perfusion imaging of the kidneys with a three- dimensional fast spin Echo Acquisition. Acad Radiol. 2016; 23: 144 - 154.
dc.identifier.citedreferenceGreer JS, Wang X, Wang Y, et al. Robust pCASL perfusion imaging using a 3D Cartesian acquisition with spiral profile reordering (CASPR). Magn Reson Med. 2019; 82: 1713 - 1724.
dc.identifier.citedreferenceTaso M, Zhao L, Guidon A, Litwiller DV, Alsop DC. Volumetric abdominal perfusion measurement using a pseudo- randomly sampled 3D fast- spin- echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Magn Reson Med. 2019; 82: 680 - 692.
dc.identifier.citedreferenceTaso M, Munsch F, Zhao L, Alsop DC. Regional and depth- dependence of cortical blood- flow assessed with high- resolution arterial spin labeling (ASL). J Cereb Blood Flow Metab. 2021; 41: 1899 - 1911.
dc.identifier.citedreferenceWinkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden ratio for time- resolved MRI. IEEE Trans Med Imaging. 2007; 26: 68 - 76.
dc.identifier.citedreferenceChan RW, Ramsay EA, Cunningham CH, Plewes DB. Temporal stability of adaptive 3D radial MRI using multidimensional golden means. Magn Reson Med. 2009; 61: 354 - 363.
dc.identifier.citedreferenceHolmes JH, Jen ML, Eisenmenger LB, Schubert T, Turski PA, Johnson KM. Spatial dependency and the role of local susceptibility for velocity selective arterial spin labeling (VS- ASL) relative tagging efficiency using accelerated 3D radial sampling with a BIR- 8 preparation. Magn Reson Med. 2021; 86: 293 - 307.
dc.identifier.citedreferenceOkell TW. Combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med. 2019; 81: 182 - 194.
dc.identifier.citedreferencevan der Plas M, Schmid S, Versluis M, Okell T, van Osch M. Time- encoded golden angle radial arterial spin labeling: simultaneous acquisition of angiography and perfusion data. NMR Biomed. 2021; 34: e4519.
dc.identifier.citedreferenceWu W- C, Mazaheri Y, Wong EC. The effects of flow dispersion and cardiac pulsation in arterial spin labeling. IEEE Trans Med Imaging. 2007; 26: 84 - 92.
dc.identifier.citedreferenceFushimi Y, Okada T, Yamamoto A, Kanagaki M, Fujimoto K, Togashi K. Timing dependence of peripheral pulse- wave- triggered pulsed arterial spin labeling. NMR Biomed. 2013; 26: 1527 - 1533.
dc.identifier.citedreferenceVerbree J, van Osch MJP. Influence of the cardiac cycle on pCASL: cardiac triggering of the end- of- labeling. MAGMA. 2018; 31: 223 - 233.
dc.identifier.citedreferenceFranklin SL, Schmid S, Bos C, van Osch MJP. Influence of the cardiac cycle on velocity selective and acceleration selective arterial spin labeling. Magn Reson Med. 2020; 83: 872 - 882.
dc.identifier.citedreferenceSchollenberger J, Figueroa CA, Nielsen J- F, Hernandez- Garcia L. Practical considerations for territorial perfusion mapping in the cerebral circulation using super- selective pseudo- continuous arterial spin labeling. Magn Reson Med. 2020; 83: 492 - 504.
dc.identifier.citedreferenceLi Y, Mao D, Li Z, et al. Cardiac- triggered pseudo- continuous arterial- spin- labeling: a cost- effective scheme to further enhance the reliability of arterial- spin- labeling MRI. Magn Reson Med. 2018; 80: 969 - 975.
dc.identifier.citedreferenceSpann SM, Shao X, Wang DJJ, et al. Robust single- shot acquisition of high resolution whole brain ASL images by combining time- dependent 2D CAPIRINHA sampling with spatio- temporal TGV reconstruction. Neuroimage. 2020; 206: 116337.
dc.identifier.citedreferenceZhao L, Fielden SW, Feng X, Wintermark M, Mugler JP III, Meyer CH. Rapid 3D dynamic arterial spin labeling with a sparse model- based image reconstruction. Neuroimage. 2015; 121: 205 - 216.
dc.identifier.citedreferenceBibic A, Knutsson L, Ståhlberg F, Wirestam R. Denoising of arterial spin labeling data: wavelet- domain filtering compared with Gaussian smoothing. Magn Reson Mater Phys Biol Med. 2010; 23: 125 - 137.
dc.identifier.citedreferenceChappell MA, Groves AR, MacIntosh BJ, Donahue MJ, Jezzard P, Woolrich MW. Partial volume correction of multiple inversion time arterial spin labeling MRI data: partial volume correction for multi- TI ASL. Magn Reson Med. 2011; 65: 1173 - 1183.
dc.identifier.citedreferenceWang Z. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magn Reson Imaging. 2012; 30: 1409 - 1415.
dc.identifier.citedreferenceLiu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. Neuroimage. 2005; 24: 207 - 215.
dc.identifier.citedreferenceMumford JA, Hernandez- Garcia L, Lee GR, Nichols TE. Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage. 2006; 33: 103 - 114.
dc.identifier.citedreferenceAvants B, Lakshmikanth S, Duda J, Detre J, Grossman M. Robust cerebral blood flow reconstruction from perfusion imaging with an open- source, multi- platform toolkit. In Proceedings of Perfusion MRI: Standardization, Beyond CBF and Everyday Clinical Applications, International Society for Magnetic Resonance in Medicine Scientific Workshop; Amsterdam. 2012. p. 21.
dc.identifier.citedreferenceMaumet C, Maurel P, Ferré J- C, Barillot C. Robust estimation of the cerebral blood flow in arterial spin labelling. Magn Reson Imaging. 2014; 32: 497 - 504.
dc.identifier.citedreferenceWang Z, Das SR, Xie SX, et al. Arterial spin labeled MRI in prodromal Alzheimer’s disease: a multi- site study. Neuroimage Clin. 2013; 2: 630 - 636.
dc.identifier.citedreferenceDolui S, Wang Z, Shinohara RT, Wolk DA, Detre JA, Alzheimer’s Disease Neuroimaging Initiative. Structural correlation- based outlier rejection (SCORE) algorithm for arterial spin labeling time series: SCORE: denoising algorithm for ASL. J Magn Reson Imaging. 2017; 45: 1786 - 1797.
dc.identifier.citedreferenceLi Y, Dolui S, Xie D- F, Wang Z. Priors- guided slice- wise adaptive outlier cleaning for arterial spin labeling perfusion MRI. J Neurosci Methods. 2018; 307: 248 - 253.
dc.identifier.citedreferenceShirzadi Z, Stefanovic B, Chappell MA, et al. Enhancement of automated blood flow estimates (ENABLE) from arterial spin- labeled MRI: enhanced automated blood flow estimates. J Magn Reson Imaging. 2018; 47: 647 - 655.
dc.identifier.citedreferenceGroves AR, Chappell MA, Woolrich MW. Combined spatial and non- spatial prior for inference on MRI time- series. Neuroimage. 2009; 45: 795 - 809.
dc.identifier.citedreferenceMaier O, Spann SM, Pinter D, et al. Non- linear fitting with joint spatial regularization in arterial spin labeling. Med Image Anal. 2021; 71: 102067.
dc.identifier.citedreferenceCarone D, Harston GWJ, Garrard J, et al. ICA- based denoising for ASL perfusion imaging. Neuroimage. 2019; 200: 363 - 372.
dc.identifier.citedreferenceBoscolo Galazzo I, Storti SF, Barnes A, et al. Arterial spin labeling reveals disrupted brain networks and functional connectivity in drug- resistant temporal epilepsy. Front Neuroinform. 2019; 12: 101.
dc.identifier.citedreferenceWells JA, Thomas DL, King MD, Connelly A, Lythgoe MF, Calamante F. Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de- noising. Magn Reson Med. 2010; 64: 715 - 724.
dc.identifier.citedreferenceBehzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007; 37: 90 - 101.
dc.identifier.citedreferenceMuschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH. Reduction of motion- related artifacts in resting state fMRI using aCompCor. Neuroimage. 2014; 96: 22 - 35.
dc.identifier.citedreferenceZhu H, Zhang J, Wang Z. Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis. J Neurosci Methods. 2018; 295: 10 - 19.
dc.identifier.citedreferenceGong K, Han P, El Fakhri G, Ma C, Li Q. Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning. NMR Biomed. 2019; 35: e4224.
dc.identifier.citedreferenceLi Z, Liu Q, Li Y, et al. A two- stage multi- loss super- resolution network for arterial spin labeling magnetic resonance imaging. In: Shen D, Liu T, Peters T, et al., eds. Medical Image Computing and Computer Assisted Intervention -  MICCAI 2019. Vol 11766. Springer International Publishing; 2019: 12 - 20.
dc.identifier.citedreferenceLiu Q, Shi J, Wang Z. Increasing arterial spin labeling perfusion image resolution using convolutional neural networks with residual- learning. In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2019. p. 8314.
dc.identifier.citedreferenceKim KH, Choi SH, Park S- H. Improving arterial spin labeling by using deep learning. Radiology. 2018; 287: 658 - 666.
dc.identifier.citedreferenceXie D, Li Y, Yang H, et al. Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn Reson Imaging. 2020; 68: 95 - 105.
dc.identifier.citedreferenceHales PW, Pfeuffer J, Clark C. Combined Denoising and suppression of transient artifacts in arterial spin labeling MRI using deep learning. J Magn Reson Imaging. 2020; 52: 1413 - 1426.
dc.identifier.citedreferenceAsllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med. 2008; 60: 1362 - 1371.
dc.identifier.citedreferencePohmann R. Accurate, localized quantification of white matter perfusion with single- voxel ASL. Magn Reson Med. 2010; 64: 1109 - 1113.
dc.identifier.citedreferenceAsllani I, Habeck C, Borogovac A, Brown TR, Brickman AM, Stern Y. Separating function from structure in perfusion imaging of the aging brain. Hum Brain Mapp. 2009; 30: 2927 - 2935.
dc.identifier.citedreferenceSteketee RME, Bron EE, Meijboom R, et al. Early- stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol. 2016; 26: 244 - 253.
dc.identifier.citedreferenceChen JJ, Rosas HD, Salat DH. Age- associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011; 55: 468 - 478.
dc.identifier.citedreferenceVidorreta M, Balteau E, Wang Z, et al. Evaluation of segmented 3D acquisition schemes for whole- BRAIN high- resolution arterial spin labeling at 3 T: WHOLE- BRAIN HIGH- RESOLUTION ASL AT 3 T. NMR Biomed. 2014; 27: 1387 - 1396.
dc.identifier.citedreferencePetr J et al. Photon vs. proton radiochemotherapy: effects on brain tissue volume and perfusion. Radiother Oncol. 2018; 128: 121 - 127.
dc.identifier.citedreferencePetr J, Schramm G, Hofheinz F, Langner J, van den Hoff J. Partial volume correction in arterial spin labeling using a look- locker sequence: PV correction in ASL using a look- locker sequence. Magn Reson Med. 2013; 70: 1535 - 1543.
dc.identifier.citedreferenceGrgac K, Li W, Huang A, Qin Q, van Zijl PCM. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities. Magn Reson Imaging. 2017; 38: 234 - 249.
dc.identifier.citedreferenceBrittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization- PreparedT2 contrast. Magn Reson Med. 1995; 33: 689 - 696.
dc.identifier.citedreferenceFoltz WD, Merchant N, Downar E, Stainsby JA, Wright GA. Coronary venous oximetry using MRI. Magn Reson Med. 1999; 42: 837 - 848.
dc.identifier.citedreferenceLu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2- relaxation- under- spin- tagging MRI. Magn Reson Med. 2008; 60: 357 - 363.
dc.identifier.citedreferenceXu F, Ge Y, Lu H. Noninvasive quantification of whole- brain cerebral metabolic rate of oxygen (CMRO2) by MRI: quantification of CMRO 2. Magn Reson Med. 2009; 62: 141 - 148.
dc.identifier.citedreferenceQin Q, Strouse JJ, Van Zijl PC. Fast measurement of blood T1 in the human jugular vein at 3 Tesla. Magn Reson Med. 2011; 65: 1297 - 1304.
dc.identifier.citedreferenceXu F, Li W, Liu P, et al Accounting for the role of hematocrit in between- subject variations of MRI- derived baseline cerebral hemodynamic parameters and functional BOLD responses. Hum Brain Mapp. 2018; 39: 344 - 353.
dc.identifier.citedreferenceChai Y, Li L, Huber L, Poser BA, Bandettini PA. Integrated VASO and perfusion contrast: a new tool for laminar functional MRI. Neuroimage. 2020; 207: 116358.
dc.identifier.citedreferenceLi W, Xu X, Liu P, et al. Quantification of whole- brain oxygenation extraction fraction and cerebral metabolic rate of oxygen consumption in adults with sickle cell anemia using individual T 2 - based oxygenation calibrations. Magn Reson Med. 2020; 83: 1066 - 1080.
dc.identifier.citedreferenceBush A, Vu C, Choi S, et al. Calibration of T 2 oximetry MRI for subjects with sickle cell disease. Magn Reson Med. 2021; 86: 1019 - 1028.
dc.identifier.citedreferenceLu H, Xu F, Grgac K, Liu P, Qin Q, van Zijl P. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med. 2012; 67: 42 - 49.
dc.identifier.citedreferenceBolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. QUantitative imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular- targeted velocity- selective spin labeling: QUIXOTIC using VT- VSSL. Magn Reson Med. 2011; 66: 1550 - 1562.
dc.identifier.citedreferenceGuo J, Wong EC. Venous oxygenation mapping using velocity- selective excitation and arterial nulling: venous oxygenation mapping using VSEAN. Magn Reson Med. 2012; 68: 1458 - 1471.
dc.identifier.citedreferenceLiu P, Dimitrov I, Andrews T, et al. Multisite evaluations of a TRUST MRI technique to measure brain oxygenation. Magn Reson Med. 2016; 75: 680 - 687.
dc.identifier.citedreferenceJiang D, Liu P, Li Y, Mao D, Xu C, Lu H. Cross- vendor harmonization of T 2 - relaxation- under- spin- tagging (TRUST) MRI for the assessment of cerebral venous oxygenation: cross- vendor harmonization of TRUST MRI. Magn Reson Med. 2018; 80: 1125 - 1131.
dc.identifier.citedreferenceThomas BP, Sheng M, Tseng BY, et al. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J Cereb Blood Flow Metab. 2017; 37: 1508 - 1516.
dc.identifier.citedreferenceGe Y, Zhang Z, Lu H, et al. Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2 - relaxation- under- spin- tagging MRI. J Cereb Blood Flow Metab. 2012; 32: 403 - 412.
dc.identifier.citedreferenceSeiler A, Deichmann R, Pfeilschifter W, Hattingen E, Singer OC, Wagner M. T2’- imaging to assess cerebral oxygen extraction fraction in carotid occlusive disease: influence of cerebral autoregulation and cerebral blood volume. PLOS One. 2016; 11: e0161408.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495: 187 - 192.
dc.identifier.citedreferencePanda, A., Mehta B.B., Coppo S., et al. Magnetic resonance fingerprinting- an overview. Curr Opin Biomed Eng 2017; 3: 56 - 66.
dc.identifier.citedreferenceJiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017; 78: 1452 - 1457.
dc.identifier.citedreferencePoorman ME, Martin MN, Ma D, et al. Magnetic resonance fingerprinting part 1: potential uses, current challenges, and recommendations. J Magn Reson Imaging. 2020; 51: 675 - 692.
dc.identifier.citedreferencevan Gelderen P, de Zwart JA, Duyn JH. Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med. 2008; 59: 788 - 795.
dc.identifier.citedreferenceWright KL, Jiang Y, Ma D, et al. Estimation of perfusion properties with MR fingerprinting arterial spin labeling. Magn Reson Imaging. 2018; 50: 68 - 77.
dc.identifier.citedreferenceSu P, Mao D, Liu P, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017; 78: 1812 - 1823.
dc.identifier.citedreferenceLahiri A, Fessler JA, Hernandez- Garcia L. Optimizing MRF- ASL scan design for precise quantification of brain hemodynamics using neural network regression. Magn Reson Med. 2020; 83: 1979 - 1991.
dc.identifier.citedreferenceZhang Q, Su P, Chen Z, et al. Deep learning- based MR fingerprinting ASL ReconStruction (DeepMARS). Magn Reson Med. 2020; 84: 1024 - 1034.
dc.identifier.citedreferenceFan H, Su P, Huang J, Liu P, Lu H. Multi- band MR fingerprinting (MRF) ASL imaging using artificial- neural- network trained with high- fidelity experimental data. Magn Reson Med. 2021; 85: 1974 - 1985.
dc.identifier.citedreferenceSuzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR angiography using arterial spin labeling: technical considerations. Magn Reson Med Sci. 2020; 19: 294 - 309.
dc.identifier.citedreferenceXu J, Shi D, Chen C, et al. Noncontrast- enhanced four- dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: a preliminary trial. J Magn Reson Imaging. 2011; 34: 1199 - 1205.
dc.identifier.citedreferenceYu S, Yan L, Yao Y, et al. Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM): comparison with time of flight (TOF) and digital subtraction angiography (DSA). Magn Reson Imaging. 2012; 30: 869 - 877.
dc.identifier.citedreferenceJang J, Schmitt P, Kim BY, et al. Non- contrast- enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural arteriovenous fistula. Neuroradiology. 2014; 56: 305 - 314.
dc.identifier.citedreferenceIryo Y, Hirai T, Kai Y, et al. Intracranial Dural arteriovenous fistulas: evaluation with 3- T four- dimensional MR angiography using arterial spin labeling. Radiology. 2014; 271: 193 - 199.
dc.identifier.citedreferenceRaoult H, Bannier E, Robert B, Barillot C, Schmitt P, Gauvrit JY. Time- resolved spin- labeled MR angiography for the depiction of cerebral arteriovenous malformations: a comparison of techniques. Radiology. 2014; 271: 524 - 533.
dc.identifier.citedreferenceRojas- Villabona A, Sokolska M, Solbach T, et al. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple- MRA). Br J Neurosurg. 2021; 1- 11: 217 - 227. 10.1080/02688697.2021.1884649
dc.identifier.citedreferenceRojas- Villabona A, Pizzini FB, Solbach T, et al. Are dynamic arterial spin- labeling MRA and time- resolved contrast- enhanced MRA suited for confirmation of obliteration following gamma knife radiosurgery of brain arteriovenous malformations? Am J Neuroradiol. 2021; 42: 671 - 678.
dc.identifier.citedreferenceSong HK, Yan L, Smith RX, et al. Noncontrast enhanced four- dimensional dynamic MRA with golden angle radial acquisition and K- space weighted image contrast (KWIC) reconstruction. Magn Reson Med. 2014; 72: 1541 - 1551.
dc.identifier.citedreferenceWu H, Block WF, Turski PA, et al. Noncontrast dynamic 3D intracranial MR angiography using pseudo- continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging. 2014; 39: 1320 - 1326.
dc.identifier.citedreferenceKoktzoglou I, Meyer JR, Ankenbrandt WJ, et al. Nonenhanced arterial spin labeled carotid MR angiography using three- dimensional radial balanced steady- state free precession imaging. J Magn Reson Imaging. 2015; 41: 1150 - 1156.
dc.identifier.citedreferenceZhou Z, Han F, Yu S, et al. Accelerated noncontrast- enhanced 4- dimensional intracranial MR angiography using golden- angle stack- of- stars trajectory and compressed sensing with magnitude subtraction. Magn Reson Med. 2018; 79: 867 - 878.
dc.identifier.citedreferenceSchauman SS, Chiew M, Okell TW. Highly accelerated vessel- selective arterial spin labeling angiography using sparsity and smoothness constraints. Magn Reson Med. 2020; 83: 892 - 905.
dc.identifier.citedreferenceUchino H, Ito M, Fujima N, et al. A novel application of four- dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease. Clin Neurol Neurosurg. 2015; 137: 105 - 111.
dc.identifier.citedreferenceHu HH, Pokorney AL, Stefani N, Chia JM, Miller JH. Non- gadolinium dynamic angiography of the neurovasculature using arterial spin labeling MRI: preliminary experience in children. MAGMA. 2017; 30: 107 - 112.
dc.identifier.citedreferenceKopeinigg D, Bammer R. Time- resolved angiography using inflow subtraction (TRAILS). Magn Reson Med. 2014; 72: 669 - 678.
dc.identifier.citedreferenceOkell TW, Schmitt P, Bi X, Chappell MA, et al. Optimization of 4D vessel- selective arterial spin labeling angiography using balanced steady- state free precession and vessel- encoding. NMR Biomed. 2016; 29: 776 - 786.
dc.identifier.citedreferenceSuzuki Y, Okell TW, Fujima N, van Osch MJP. Acceleration of vessel- selective dynamic MR angiography by pseudocontinuous arterial spin labeling in combination with acquisition of ConTRol and labEled images in the same shot (ACTRESS). Magn Reson Med. 2019; 81: 2995 - 3006.
dc.identifier.citedreferenceWu H, Block WF, Turski PA, Mistretta CA, Johnson KM. Noncontrast- enhanced three- dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med. 2013; 69: 708 - 715.
dc.identifier.citedreferenceQin Q, Shin T, Schär M, Guo H, Chen H, Qiao Y. Velocity- selective magnetization- prepared non- contrast- enhanced cerebral MR angiography at 3 Tesla: improved immunity to B0/B1 inhomogeneity. Magn Reson Med. 2016; 75: 1232 - 1241.
dc.identifier.citedreferenceShin T, Qin Q. Characterization and suppression of stripe artifact in velocity- selective magnetization- prepared unenhanced MR angiography. Magn Reson Med. 2018; 80: 1997 - 2005.
dc.identifier.citedreferenceShin T, Qin Q, Park J- Y, Crawford RS, Rajagopalan S. Identification and reduction of image artifacts in non- contrast- enhanced velocity- selective peripheral angiography at 3T: artifact reduction in velocity- selective peripheral MRA at 3T. Magn Reson Med. 2016; 76: 466 - 477.
dc.identifier.citedreferenceLi W, Xu F, Schär M, et al. Whole- brain arteriography and venography: using improved velocity- selective saturation pulse trains. Magn Reson Med. 2018; 79: 2014 - 2023.
dc.identifier.citedreferenceYan L, Salamon N, Wang DJJ. Time- resolved noncontrast enhanced 4- D dynamic magnetic resonance angiography using multibolus TrueFISP- based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med. 2014; 71: 551 - 560.
dc.identifier.citedreferenceYan L, Wang S, Zhuo Y, et al. Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP- based spin tagging with alternating radiofrequency. Radiology. 2010; 256: 270 - 279.
dc.identifier.citedreferenceSuzuki Y, Helle M, Koken P, Van Cauteren M, van Osch MJP. Simultaneous acquisition of perfusion image and dynamic MR angiography using time- encoded pseudo- continuous ASL. Magn Reson Med. 2018; 79: 2676 - 2684.
dc.identifier.citedreferenceAguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002; 15: 488 - 500.
dc.identifier.citedreferenceBorogovac A, Habeck C, Small SA, Asllani I. Mapping brain function using a 30- day interval between baseline and activation: a novel arterial spin labeling fMRI approach. J Cereb Blood Flow Metab. 2010; 30: 1721 - 1733.
dc.identifier.citedreferenceWang J, Aguirre GK, Kimberg DY, Detre JA. Empirical analyses of null- hypothesis perfusion FMRI data at 1.5 and 4 T. Neuroimage. 2003; 19: 1449 - 1462.
dc.identifier.citedreferenceAguirre GK, Detre, JA Wang J. Perfusion fMRI for functional neuroimaging. Int Rev Neurobiol. 2005; 66: 213 - 236.
dc.identifier.citedreferenceHuber L, UludaÄ K, Möller HE. Non- BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage. 2019; 197: 742 - 760.
dc.identifier.citedreferenceIvanov D, Gardumi A, Haast RAM, Pfeuffer J, Poser BA, UludaÄ K. Comparison of 3T and 7T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage. 2017; 156: 363 - 376.
dc.identifier.citedreferenceDiekhoff S, UludaÄ K, Sparing R, et al. Functional localization in the human brain: gradient- Echo, spin- Echo, and arterial spin- labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp. 2011; 32: 341 - 357.
dc.identifier.citedreferenceFernández- Seara MA, Wang J, Wang Z, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp. 2007; 28: 1391 - 1400.
dc.identifier.citedreferenceKemeny S, Ye FQ, Birn R, Braun AR. Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Hum Brain Mapp. 2005; 24: 173 - 183.
dc.identifier.citedreferenceTroiani V, Fernández- Seara MA, Wang Z, Detre JA, Ash S, Grossman M. Narrative speech production: An fMRI study using continuous arterial spin labeling. Neuroimage. 2008; 40: 932 - 939.
dc.identifier.citedreferencede Zubicaray G, Johnson K, Howard D, McMahon K. A perfusion fMRI investigation of thematic and categorical context effects in the spoken production of object names. Cortex. 2014; 54: 135 - 149.
dc.identifier.citedreferenceVidorreta M, Wang Z, Rodríguez I, Pastor MA, Detre JA, Fernández- Seara MA. Comparison of 2D and 3D single- shot ASL perfusion fMRI sequences. Neuroimage. 2013; 66: 662 - 671.
dc.identifier.citedreferenceMunsch F, Taso M, Zhao L, et al. Rotated spiral RARE for high spatial and temporal resolution volumetric arterial spin labeling acquisition. Neuroimage. 2020; 223: 117371.
dc.identifier.citedreferenceHernandez- Garcia L, Nielsen J- F, Noll DC. Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med. 2018; 81: 1004 - 1015.
dc.identifier.citedreferenceBiswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting- state functional connectivity maps. NMR Biomed. 1997; 10: 165 - 170.
dc.identifier.citedreferenceChuang K- H, van Gelderen P, Merkle H, et al. Mapping resting- state functional connectivity using perfusion MRI. Neuroimage. 2008; 40: 1595 - 1605.
dc.identifier.citedreferenceFernández- Seara MA, Aznárez- Sanado M, Mengual E, Irigoyen J, Heukamp F, Pastor MA. Effects on resting cerebral blood flow and functional connectivity induced by metoclopramide: a perfusion MRI study in healthy volunteers: metoclopramide effects on cerebral blood flow. Br J Pharmacol. 2011; 163: 1639 - 1652.
dc.identifier.citedreferenceViviani R, Messina I, Walter M. Resting state functional connectivity in perfusion imaging: correlation maps with BOLD connectivity and resting state perfusion. PLoS ONE. 2011; 6: 6.
dc.identifier.citedreferenceLiang X, Connelly A, Calamante F. Voxel- wise functional Connectomics using arterial spin labeling functional magnetic resonance imaging: the role of Denoising. Brain Connect. 2015; 5: 543 - 553.
dc.identifier.citedreferenceLuca MD, Beckmann CF, Stefano ND, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long- distance interactions in the human brain. Neuroimage. 2006; 29: 1359 - 1367.
dc.identifier.citedreferenceJann K, Gee DG, Kilroy E, et al. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks. Neuroimage. 2015; 106: 111 - 122.
dc.identifier.citedreferenceDai W, Varma G, Scheidegger R, Alsop DC. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab. 2016; 36: 463 - 473.
dc.identifier.citedreferenceDai W, Chen M, Duan W, et al. Abnormal perfusion fluctuation and perfusion connectivity in bipolar disorder measured by dynamic arterial spin labeling. Bipolar Disord. 2020; 22: 401 - 410.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.