Show simple item record

Directed Particle Transport via Reconfigurable Fiber Networks

dc.contributor.authorCu, Katharina
dc.contributor.authorSteier, Anke
dc.contributor.authorKlaiber, Marvin
dc.contributor.authorFranzreb, Matthias
dc.contributor.authorLahann, Joerg
dc.date.accessioned2022-09-26T16:03:11Z
dc.date.available2023-09-26 12:03:09en
dc.date.available2022-09-26T16:03:11Z
dc.date.issued2022-08
dc.identifier.citationCu, Katharina; Steier, Anke; Klaiber, Marvin; Franzreb, Matthias; Lahann, Joerg (2022). "Directed Particle Transport via Reconfigurable Fiber Networks." Advanced Functional Materials 32(35): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/174803
dc.description.abstractMass transport limitations of particulates within conventional microanalytical systems are often cited as the root cause for low sensitivity but can be overcome by directed analyte transport, such as via biomolecular motors or gradient surfaces. An ongoing challenge is the development of materials that are passive in nature (i.e., no external power source required), but can reconfigure to perform work, such as transporting particle‐based analytes. Mimicking biology’s concepts of autonomous and reconfigurable materials systems, like the Drosera capensis leaf, reconfigurable fiber networks that effectively concentrate particulates within a localized spot that can act as a detection patch are developed. These networks, prepared by electrohydrodynamic co‐jetting, draw their reconfigurability from a bicompartmental fiber architecture. Upon exposure to neutral pH, a differential swelling of both fiber compartments gives rise to interfacial tension and ultimately results in shape reconfiguration of the fiber network. Compared to free particles, the reconfigurable fiber networks display a 57‐fold increase in analyte detectability, average transport efficiencies of 91.9 ± 2.4%, and separation selectivity between different surface properties of 95 ± 3%. The integration of biomimetic materials into microanalytical systems, exemplified in this study, offers ample opportunities to design novel and effective detection schemes that circumvent mass transport limitations.Biomimetic hydrogel fibers deposited in a structured spiderweb network via electrohydrodynamic co‐jet writing allow for precise control over the direction of their bending motion. The shape reconfigurable network exhibits high selectivity and efficiency in actively transporting particulates. Based on these results, their potential in overcoming mass transport limitations in microanalytical systems is demonstrated.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherhydrogels
dc.subject.otherscaffolds
dc.subject.othersensors
dc.subject.otherbicompartmental
dc.subject.otherbiomimetic materials
dc.subject.otheractuations
dc.subject.otheractive transports
dc.titleDirected Particle Transport via Reconfigurable Fiber Networks
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174803/1/adfm202204080-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174803/2/adfm202204080_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174803/3/adfm202204080.pdf
dc.identifier.doi10.1002/adfm.202204080
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferencea) K.‐H. Roh, D. C. Martin, J. Lahann, Nat. Mater. 2005, 4, 759; b) J. Lee, S. Moon, Y. B. Han, S. J. Yang, J. Lahann, K. J. Lee, Macromol. Rapid Commun. 2022, 43, 2100560.
dc.identifier.citedreferencea) S. Zakharchenko, N. Puretskiy, G. Stoychev, M. Stamm, L. Ionov, Soft Matter 2010, 6, 2633; b) G. Stoychev, S. Zakharchenko, S. Turcaud, J. W. Dunlop, L. Ionov, ACS Nano 2012, 6, 3925; c) H. Lee, C. Xia, N. X. Fang, Soft Matter 2010, 6, 4342; d) Y. Ma, Y. Zhang, B. Wu, W. Sun, Z. Li, J. Sun, Angew. Chem. 2011, 123, 6378; e) G. Stoychev, S. Turcaud, J. W. Dunlop, L. Ionov, Adv. Funct. Mater. 2013, 23, 2295; f) K. Suzumori, S. Endo, T. Kanda, N. Kato, H. Suzuki, Proc. 2007 IEEE Int. Conf. on Robotics and Automation, IEEE, Piscataway, NJ 2007; g) P. Polygerinos, Z. Wang, J. T. Overvelde, K. C. Galloway, R. J. Wood, K. Bertoldi, C. J. Walsh, IEEE Trans. Rob. 2015, 31, 778.
dc.identifier.citedreferenceK. Balani, V. Verma, A. Agarwal, R. Narayan, Biosurfaces: A materials Science and Engineering Perspective, John Wiley & Sons, New York 2015.
dc.identifier.citedreferencea) D. R. Reyes, D. Iossifidis, P.‐A. Auroux, A. Manz, Anal. Chem. 2002, 74, 2623; b) Y. Song, B. Lin, T. Tian, X. Xu, W. Wang, Q. Ruan, J. Guo, Z. Zhu, C. Yang, Anal. Chem. 2018, 91, 388; c) F. Wieland, R. Bruch, M. Bergmann, S. Partel, G. A. Urban, C. Dincer, Polymers 2020, 12, 104; d) P. R. Coulet, L. J. Blum, Biosensor Principles and Applications, CRC Press, Boca Raton, FL 2019.
dc.identifier.citedreferencea) A. Sitt, H. Hess, Nano Lett. 2015, 15, 3341; b) P. Katira, H. Hess, Nano Lett. 2010, 10, 567.
dc.identifier.citedreferencea) M. Lin, J. Wang, G. Zhou, J. Wang, N. Wu, J. Lu, J. Gao, X. Chen, J. Shi, X. Zuo, Angew. Chem. 2015, 127, 2179; b) X. Qu, F. Yang, H. Chen, J. Li, H. Zhang, G. Zhang, L. Li, L. Wang, S. Song, Y. Tian, ACS Appl. Mater. Interfaces 2017, 9, 16026.
dc.identifier.citedreferencea) R. J. White, H. S. White, in A Random Walk Through Electron‐Transfer Kinetics, 2005, p. 214 ‐A; b) P. E. Sheehan, L. J. Whitman, Nano Lett. 2005, 5, 803; c) M. Zhao, X. Wang, D. Nolte, Biomed. Opt. Express 2010, 1, 983.
dc.identifier.citedreferenceT. Nitta, H. Hess, Cell Mol. Bioeng. 2013, 6, 109.
dc.identifier.citedreferencea) S. Ramachandran, K. H. Ernst, G. D. Bachand, V. Vogel, H. Hess, Small 2006, 2, 330; b) D. Inoue, T. Nitta, A. M. R. Kabir, K. Sada, J. P. Gong, A. Konagaya, A. Kakugo, Nat. Commun. 2016, 7, 12557; c) A. J. Wollman, C. Sanchez‐Cano, H. M. Carstairs, R. A. Cross, A. J. Turberfield, Nat. Nanotechnol. 2014, 9, 44.
dc.identifier.citedreferencea) T. J. Grove, K. A. Puckett, N. M. Brunet, G. Mihajlovic, L. A. McFadden, P. Xiong, S. von Molnár, T. S. Moerland, P. B. Chase, IEEE Trans. Adv. Packag. 2005, 28, 556; b) R. Seetharam, Y. Wada, S. Ramachandran, H. Hess, P. Satir, Lab Chip 2006, 6, 1239; c) M. A. Rahman, C. Reuther, F. W. Lindberg, M. Mengoni, A. Salhotra, G. Heldt, H. Linke, S. Diez, A. Månsson, Nano Lett. 2019, 19, 7155; d) L. Hines, K. Petersen, G. Z. Lum, M. Sitti, Adv. Mater. 2017, 29, 1603483; e) M. Lard, L. Ten Siethoff, S. Kumar, M. Persson, G. Te Kronnie, H. Linke, A. Månsson, Biosens. Bioelectron. 2013, 48, 145.
dc.identifier.citedreferencea) S. Zhang, S. J. Kieffer, C. Zhang, A. G. Alleyne, P. V. Braun, Adv. Mater. 2018, 30, 1803140; b) N. Yonet‐Tanyeri, R. C. Evans, H. Tu, P. V. Braun, Adv. Mater. 2011, 23, 1739; c) H.‐J. Koo, K. V. Waynant, C. Zhang, P. V. Braun, ACS Appl. Mater. Interfaces 2014, 6, 14320; d) T. H. Tsai, M. A. Ali, Z. Jiang, P. V. Braun, Angew. Chem., Int. Ed. 2017, 56, 5001; e) S. Zhang, C. Zhang, H. Chen, S. J. Kieffer, F. Neubrech, H. Giessen, A. G. Alleyne, P. V. Braun, Angew. Chem. 2019, 131, 18333.
dc.identifier.citedreferenceS. M. Desai, R. Singh, in Long Term Properties of Polyolefins, Springer, Berlin 2004, p. 231.
dc.identifier.citedreferenceJ. M. Goddard, J. Hotchkiss, Prog. Polym. Sci. 2007, 32, 698.
dc.identifier.citedreferencea) N. Inagaki, Plasma Surface Modification and Plasma Polymerization, CRC Press, Boca Raton, FL 2014; b) S. Morgenthaler, C. Zink, N. D. Spencer, Soft Matter 2008, 4, 419.
dc.identifier.citedreferencea) D. P. Holmes, A. J. Crosby, Adv. Mater. 2007, 19, 3589; b) K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nat. Mater. 2005, 4, 293; c) L. Ionov, Adv. Funct. Mater. 2013, 23, 4555.
dc.identifier.citedreferenceC. A. La Porta, M. C. Lionetti, S. Bonfanti, S. Milan, C. Ferrario, D. Rayneau‐Kirkhope, M. Beretta, M. Hanifpour, U. Fascio, M. Ascagni, Proc. Natl. Acad. Sci. USA 2019, 116, 18777.
dc.identifier.citedreferencea) Y. Zhang, L. Ionov, Langmuir 2015, 31, 4552; b) A. Kirillova, R. Maxson, G. Stoychev, C. T. Gomillion, L. Ionov, Adv. Mater. 2017, 29, 1703443; c) G. Stoychev, C. Reuther, S. Diez, L. Ionov, Angew. Chem. 2016, 128, 16340.
dc.identifier.citedreferenceS. Moon, M. S. Jones, E. Seo, J. Lee, L. Lahann, J. H. Jordahl, K. J. Lee, J. Lahann, Sci. Adv. 2021, 7, eabf5289.
dc.identifier.citedreferencea) K. J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, J. Lahann, Proc. Natl. Acad. Sci. USA 2012, 109, 16057; b) J. Lee, T. H. Park, K. J. Lee, J. Lahann, Macromol. Rapid Commun. 2016, 37, 73.
dc.identifier.citedreferenceJ.‐W. Yoo, S. Mitragotri, Proc. Natl. Acad. Sci. USA 2010, 107, 11205.
dc.identifier.citedreferencea) C. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett. 2008, 93, 123111; b) T.‐S. Kim, Y. Lee, W. Xu, Y. H. Kim, M. Kim, S.‐Y. Min, T. H. Kim, H. W. Jang, T.‐W. Lee, Nano Energy 2019, 58, 437; c) C. Chang, V. H. Tran, J. Wang, Y.‐K. Fuh, L. Lin, Nano Lett. 2010, 10, 726.
dc.identifier.citedreferencea) J. Nie, Z.‐l. Wang, J.‐f. Li, Y. Gong, J.‐x. Sun, S.‐g. Yang, Chin. J. Polym. Sci. 2017, 35, 1001; b) L. Meng, W. Klinkajon, P.‐r. K‐hasuwan, S. Harkin, P. Supaphol, G. E. Wnek, Polym. Int. 2015, 64, 42.
dc.identifier.citedreferencea) M. Fukushima, K. Tatsumi, S. Wada, Anal. Sci. 1999, 15, 1153; b) L. F. Gudeman, N. A. Peppas, J. Membr. Sci. 1995, 107, 239.
dc.identifier.citedreferencea) T. Anirudhan, S. Rejeena, Chem. Eng. J. 2012, 187, 150; b) R. da Silva, M. G. de Oliveira, Polymer 2007, 48, 4114.
dc.identifier.citedreferencea) W. A. Laftah, S. Hashim, J. Compos. Mater. 2014, 48, 555; b) S. J. Kim, K. J. Lee, S. M. Lee, I. Y. Kim, S. I. Kim, High Perform. Polym. 2004, 16, 625.
dc.identifier.citedreferenceA. Covington, R. Robinson, Anal. Chim. Acta 1975, 78, 219.
dc.identifier.citedreferenceS. Korten, N. Albet‐Torres, F. Paderi, L. ten Siethoff, S. Diez, T. Korten, G. te Kronnie, A. Månsson, Lab Chip 2013, 13, 866.
dc.identifier.citedreferencea) J. Lahann, W. Plüster, D. Klee, H.‐G. Gattner, H. Höcker, J. Mater. Sci.: Mater. Med. 2001, 12, 807; b) H. Nandivada, H. Y. Chen, J. Lahann, Macromol. Rapid Commun. 2005, 26, 1794.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.