Show simple item record

Trio‐binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes

dc.contributor.authorGreenhalgh, Robert
dc.contributor.authorHolding, Matthew L.
dc.contributor.authorOrr, Teri J.
dc.contributor.authorHenderson, James B.
dc.contributor.authorParchman, Thomas L.
dc.contributor.authorMatocq, Marjorie D.
dc.contributor.authorShapiro, Michael D.
dc.contributor.authorDearing, M. Denise
dc.date.accessioned2022-09-26T16:04:05Z
dc.date.available2023-11-26 12:04:00en
dc.date.available2022-09-26T16:04:05Z
dc.date.issued2022-10
dc.identifier.citationGreenhalgh, Robert; Holding, Matthew L.; Orr, Teri J.; Henderson, James B.; Parchman, Thomas L.; Matocq, Marjorie D.; Shapiro, Michael D.; Dearing, M. Denise (2022). "Trio‐binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes." Molecular Ecology Resources (7): 2713-2731.
dc.identifier.issn1755-098X
dc.identifier.issn1755-0998
dc.identifier.urihttps://hdl.handle.net/2027.42/174819
dc.description.abstractThe genomic architecture underlying the origins and maintenance of biodiversity is an increasingly accessible feature of species, due in large part to third‐generation sequencing and novel analytical toolsets. Applying these techniques to woodrats (Neotoma spp.) provides a unique opportunity to study how herbivores respond to environmental change. Neotoma bryanti and N. lepida independently achieved a major dietary feat in the aftermath of a natural climate change event: switching to the novel, toxic food source creosote bush (Larrea tridentata). To better understand the genetic mechanisms underlying this ability, we employed a trio binning sequencing approach with a N. bryanti × N. lepida F1 hybrid, allowing the simultaneous assembly of genomes representing each parental species. The resulting phased, chromosome‐level, highly complete haploid references enabled us to explore the genomic architecture of several gene families—cytochromes P450, UDP‐glucuronosyltransferases (UGTs), and ATP‐binding cassette (ABC) transporters—known to play key roles in the metabolism of naturally occurring toxic dietary compounds. In addition to duplication events in the ABCG and UGT2B subfamilies, we found expansions in three P450 gene families (2A, 2B, 3A), including the evolution of multiple novel gene islands within the 2B and 3A subfamilies, which may have provided the crucial substrate for dietary adaptation. Our assemblies demonstrate that trio binning from an F1 hybrid rodent effectively recovers parental genomes from species that diverged more than a million years ago.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherxenobiotic metabolism
dc.subject.othergenome sequencing
dc.subject.otheradaptive evolution
dc.subject.otherdietary adaptation
dc.subject.otherfunctional genomics
dc.subject.othermetabolic adaptation
dc.titleTrio‐binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174819/1/men13650-sup-0001-FiguresS1-S11.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174819/2/men13650.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174819/3/men13650_am.pdf
dc.identifier.doi10.1111/1755-0998.13650
dc.identifier.sourceMolecular Ecology Resources
dc.identifier.citedreferenceRat Genome Sequencing Project Consortium. ( 2004 ). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428 ( 6982 ), 493 – 521. https://doi.org/10.1038/nature02426
dc.identifier.citedreferenceRosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., Tryjanowski, P., & Hanson, C. E. ( 2007 ). Assessment of observed changes and responses in natural and managed systems. In M. L. Parry, O. F. Canziani, J. P. Palutikof, & P. J. van der Linden (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 79 – 131 ). Cambridge University Press.
dc.identifier.citedreferenceRoss, M. T., Grafham, D. V., Coffey, A. J., Scherer, S., McLay, K., Muzny, D., Platzer, M., Howell, G. R., Burrows, C., Bird, C. P., Frankish, A., Lovell, F. L., Howe, K. L., Ashurst, J. L., Fulton, R. S., Sudbrak, R., Wen, G., Jones, M. C., Hurles, M. E., … Bentley, D. R. ( 2005 ). The DNA sequence of the human X chromosome. Nature, 434 ( 7031 ), 325 – 337. https://doi.org/10.1038/nature03440
dc.identifier.citedreferenceRunge‐Morris, M., & Kocarek, T. A. ( 2009 ). Regulation of sulfotransferase and UDP‐glucuronosyltransferase gene expression by the PPARs. PPAR Research, 2009, 1 – 14. https://doi.org/10.1155/2009/728941
dc.identifier.citedreferenceSarkadi, B., Homolya, L., Szakács, G., & Váradi, A. ( 2006 ). Human multidrug resistance ABCB and ABCG transporters: Participation in a Chemoimmunity defense system. Physiological Reviews, 86 ( 4 ), 1179 – 1236. https://doi.org/10.1152/physrev.00037.2005
dc.identifier.citedreferenceSchneider, V. A., Graves‐Lindsay, T., Howe, K., Bouk, N., Chen, H.‐C., Kitts, P. A., Murphy, T. D., Pruitt, K. D., Thibaud‐Nissen, F., Albracht, D., Fulton, R. S., Kremitzki, M., Magrini, V., Markovic, C., McGrath, S., Steinberg, K. M., Auger, K., Chow, W., Collins, J., … Church, D. M. ( 2017 ). Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Research, 27 ( 5 ), 849 – 864. https://doi.org/10.1101/gr.213611.116
dc.identifier.citedreferenceSeppey, M., Manni, M., & Zdobnov, E. M. ( 2019 ). BUSCO: Assessing genome assembly and annotation completeness. In M. Kollmar (Ed.), Gene prediction (Vol. 1962, pp. 227 – 245 ). Springer. https://doi.org/10.1007/978‐1‐4939‐9173‐0_14
dc.identifier.citedreferenceShah, M. B., Liu, J., Huo, L., Zhang, Q., Dearing, M. D., Wilderman, P. R., Szklarz, G. D., Stout, C. D., & Halpert, J. R. ( 2016 ). Structure‐function analysis of mammalian CYP2B enzymes using 7‐substituted coumarin derivatives as probes: Utility of crystal structures and molecular modeling in understanding xenobiotic metabolism. Molecular Pharmacology, 89 ( 4 ), 435 – 445. https://doi.org/10.1124/mol.115.102111
dc.identifier.citedreferenceShumate, A., & Salzberg, S. L. ( 2021 ). Liftoff: Accurate mapping of gene annotations. Bioinformatics, 37 ( 12 ), 1639 – 1643. https://doi.org/10.1093/bioinformatics/btaa1016
dc.identifier.citedreferenceShurtliff, Q. R., Murphy, P. J., & Matocq, M. D. ( 2014 ). Ecological segregation in a small mammal hybrid zone: Habitat‐specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale. Evolution, 68 ( 3 ), 729 – 742. https://doi.org/10.1111/evo.12299
dc.identifier.citedreferenceSkopec, M. M., Malenke, J. R., Halpert, J. R., & Denise Dearing, M. ( 2013 ). An in vivo assay for elucidating the importance of cytochromes P450 for the ability of a wild mammalian herbivore ( Neotoma lepida ) to consume toxic plants. Physiological and Biochemical Zoology, 86 ( 5 ), 593 – 601. https://doi.org/10.1086/672212
dc.identifier.citedreferenceSmith, F. A., Betancourt, J. L., & Brown, J. H. ( 1995 ). Evolution of body size in the woodrat over the past 25,000 years of climate change. Science, 270 ( 5244 ), 2012 – 2014. https://doi.org/10.1126/science.270.5244.2012
dc.identifier.citedreferenceSmith, J. R., Hayman, G. T., Wang, S.‐J., Laulederkind, S. J. F., Hoffman, M. J., Kaldunski, M. L., Tutaj, M., Thota, J., Nalabolu, H. S., Ellanki, S. L. R., Tutaj, M. A., De Pons, J. L., Kwitek, A. E., Dwinell, M. R., & Shimoyama, M. E. ( 2019 ). The year of the rat: The rat genome database at 20: A multi‐species knowledgebase and analysis platform. Nucleic Acids Research, 48, D731 – D742. https://doi.org/10.1093/nar/gkz1041
dc.identifier.citedreferenceSorensen, J. S., & Dearing, M. D. ( 2006 ). Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. Journal of Chemical Ecology, 32 ( 6 ), 1181 – 1196.
dc.identifier.citedreferenceSorensen, J. S., Skopec, M. M., & Dearing, M. D. ( 2006 ). Application of pharmacological approaches to plant–mammal interactions. Journal of Chemical Ecology, 32 ( 6 ), 1229 – 1246. https://doi.org/10.1007/s10886‐006‐9086‐z
dc.identifier.citedreferenceStanke, M., Steinkamp, R., Waack, S., & Morgenstern, B. ( 2004 ). AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Research, 32(Web, Server), W309–W312. https://doi.org/10.1093/nar/gkh379
dc.identifier.citedreferenceStecher, G., Tamura, K., & Kumar, S. ( 2020 ). Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution, 37 ( 4 ), 1237 – 1239. https://doi.org/10.1093/molbev/msz312
dc.identifier.citedreferenceThomas, J. H. ( 2007 ). Rapid birth‐death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genetics, 3 ( 5 ), e67. https://doi.org/10.1371/journal.pgen.0030067
dc.identifier.citedreferenceTolson, A. H., & Wang, H. ( 2010 ). Regulation of drug‐metabolizing enzymes by xenobiotic receptors: PXR and CAR. Advanced Drug Delivery Reviews, 62 ( 13 ), 1238 – 1249. https://doi.org/10.1016/j.addr.2010.08.006
dc.identifier.citedreferenceVan Devender, T. R. ( 1977 ). Holocene woodlands in the southwestern deserts. Science, 198 ( 4313 ), 189 – 192. https://doi.org/10.1126/science.198.4313.189
dc.identifier.citedreferenceVan Devender, T. R., & Spaulding, W. G. ( 1979 ). Development of vegetation and climate in the southwestern United States. Science, 204 ( 4394 ), 701 – 710. https://doi.org/10.1126/science.204.4394.701
dc.identifier.citedreferenceWeinstein, S. B., Martínez‐Mota, R., Stapleton, T. E., Klure, D. M., Greenhalgh, R., Orr, T. J., Dale, C., Kohl, K., & Dearing, M. D. ( 2021 ). Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats ( Neotoma spp.). Proceedings of the National Academy of Sciences of the United States of America, 118 ( 47 ), e2108787118. https://doi.org/10.1073/pnas.2108787118
dc.identifier.citedreferenceWells, P. V., & Hunziker, J. H. ( 1976 ). Origin of the creosote bush ( Larrea ) deserts of southwestern North America. Annals of the Missouri Botanical Garden, 63 ( 4 ), 843. https://doi.org/10.2307/2395251
dc.identifier.citedreferenceWells, P. V., & Woodcock, D. ( 1985 ). Full‐glacial vegetation of Death Valley, California: Juniper woodland opening to yucca semidesert. Madrono, 32 ( 1 ), 11 – 23.
dc.identifier.citedreferenceWen, Z., Rupasinghe, S., Niu, G., Berenbaum, M. R., & Schuler, M. A. ( 2006 ). CYP6B1 and CYP6B3 of the black swallowtail ( Papilio polyxenes ): Adaptive evolution through subfunctionalization. Molecular Biology and Evolution, 23 ( 12 ), 2434 – 2443. https://doi.org/10.1093/molbev/msl118
dc.identifier.citedreferenceWilderman, P. R., Jang, H.‐H., Malenke, J. R., Salib, M., Angermeier, E., Lamime, S., Dearing, M. D., & Halpert, J. R. ( 2014 ). Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida. Toxicology and Applied Pharmacology, 274 ( 3 ), 393 – 401. https://doi.org/10.1016/j.taap.2013.12.005
dc.identifier.citedreferenceWu, T. D., & Watanabe, C. K. ( 2005 ). GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21 ( 9 ), 1859 – 1875. https://doi.org/10.1093/bioinformatics/bti310
dc.identifier.citedreferenceXue, L., Zgoda, V. G., Arison, B., & Almira Correia, M. ( 2003 ). Structure–function relationships of rat liver CYP3A9 to its human liver orthologs: Site‐directed active site mutagenesis to a progesterone dihydroxylase. Archives of Biochemistry and Biophysics, 409 ( 1 ), 113 – 126. https://doi.org/10.1016/S0003‐9861(02)00582‐9
dc.identifier.citedreferenceYates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez‐Jarreta, J., Amode, M. R., Armean, I. M., Azov, A. G., Bennett, R., Bhai, J., Billis, K., Boddu, S., Marugán, J. C., Cummins, C., Davidson, C., Dodiya, K., Fatima, R., Gall, A., … Flicek, P. ( 2019 ). Ensembl 2020. Nucleic Acids Research, 48, D682 – D688. https://doi.org/10.1093/nar/gkz966
dc.identifier.citedreferenceZhang, B., Xie, W., & Krasowski, M. D. ( 2008 ). PXR: A xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics, 9 ( 11 ), 1695 – 1709. https://doi.org/10.2217/14622416.9.11.1695
dc.identifier.citedreferenceAlnouti, Y., & Klaassen, C. D. ( 2006 ). Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicological Sciences, 93 ( 2 ), 242 – 255. https://doi.org/10.1093/toxsci/kfl050
dc.identifier.citedreferenceAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. ( 1990 ). Basic local alignment search tool. Journal of Molecular Biology, 215 ( 3 ), 403 – 410. https://doi.org/10.1016/S0022‐2836(05)80360‐2
dc.identifier.citedreferenceBaker, R. J., & Mascarello, J. T. ( 1969 ). Karyotypic analyses of the genus Neotoma (Cricetidae, Rodentia). Cytogenetic and Genome Research, 8 ( 3 ), 187 – 198. https://doi.org/10.1159/000130061
dc.identifier.citedreferenceBredemeyer, K. R., Harris, A. J., Li, G., Zhao, L., Foley, N. M., Roelke‐Parker, M., O’Brien, S. J., Lyons, L. A., Warren, W. C., & Murphy, W. J. ( 2020 ). Ultracontinuous single haplotype genome assemblies for the domestic cat ( Felis catus ) and Asian leopard cat ( Prionailurus bengalensis ). Journal of Heredity, 112, 165 – 173. https://doi.org/10.1093/jhered/esaa057
dc.identifier.citedreferenceBrůna, T., Lomsadze, A., & Borodovsky, M. ( 2020 ). GeneMark‐EP+: Eukaryotic gene prediction with self‐training in the space of genes and proteins. NAR Genomics and Bioinformatics, 2 ( 2 ), lqaa026. https://doi.org/10.1093/nargab/lqaa026
dc.identifier.citedreferenceBuchfink, B., Xie, C., & Huson, D. H. ( 2015 ). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 ( 1 ), 59 – 60. https://doi.org/10.1038/nmeth.3176
dc.identifier.citedreferenceBuckley, D. B., & Klaassen, C. D. ( 2007 ). Tissue‐ and gender‐specific mRNA expression of UDP‐glucuronosyltransferases (UGTs) in mice. Drug Metabolism and Disposition, 35 ( 1 ), 121 – 127. https://doi.org/10.1124/dmd.106.012070
dc.identifier.citedreferenceCamacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. ( 2009 ). BLAST+: Architecture and applications. BMC Bioinformatics, 10 ( 1 ), 421. https://doi.org/10.1186/1471‐2105‐10‐421
dc.identifier.citedreferenceCampbell, M., Oakeson, K. F., Yandell, M., Halpert, J. R., & Dearing, D. ( 2016 ). The draft genome sequence and annotation of the desert woodrat Neotoma lepida. Genomics Data, 9, 58 – 59. https://doi.org/10.1016/j.gdata.2016.06.008
dc.identifier.citedreferenceChakraborty, M., Baldwin‐Brown, J. G., Long, A. D., & Emerson, J. J. ( 2016 ). Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Research, 44, e147. https://doi.org/10.1093/nar/gkw654
dc.identifier.citedreferenceChapman, B., & Chang, J. ( 2000 ). Biopython: Python tools for computational biology. ACM Sigbio Newsletter, 20 ( 2 ), 15 – 19.
dc.identifier.citedreferenceChen, M.‐J. M., Lin, H., Chiang, L.‐M., Childers, C. P., & Poelchau, M. F. ( 2019 ). The GFF3toolkit: QC and merge pipeline for genome annotation. In S. J. Brown & M. E. Pfrender (Eds.), Insect genomics (Vol. 1858, pp. 75 – 87 ). Springer. https://doi.org/10.1007/978‐1‐4939‐8775‐7_7
dc.identifier.citedreferenceCoyner, B. S., Murphy, P. J., & Matocq, M. D. ( 2015 ). Hybridization and asymmetric introgression across a narrow zone of contact between Neotoma fuscipes and N. macrotis (Rodentia: Cricetidae): Hybridization in Neotoma. Biological Journal of the Linnean Society, 115 ( 1 ), 162 – 172. https://doi.org/10.1111/bij.12487
dc.identifier.citedreferenceDaniel, V. ( 1993 ). Glutathione S‐transferases: Gene structure and regulation of expression. Critical Reviews in Biochemistry and Molecular Biology, 28 ( 3 ), 173 – 207. https://doi.org/10.3109/10409239309086794
dc.identifier.citedreferenceDearing, M. D., Foley, W. J., & McLean, S. ( 2005 ). The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annual Review of Ecology Evolution and Systematics, 36, 169 – 189.
dc.identifier.citedreferenceDeng, C., Cheng, C.‐H. C., Ye, H., He, X., & Chen, L. ( 2010 ). Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 50 ), 21593 – 21598. https://doi.org/10.1073/pnas.1007883107
dc.identifier.citedreferenceDobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. ( 2013 ). STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics, 29 ( 1 ), 15 – 21. https://doi.org/10.1093/bioinformatics/bts635
dc.identifier.citedreferenceDunn, N. A., Unni, D. R., Diesh, C., Munoz‐Torres, M., Harris, N. L., Yao, E., Rasche, H., Holmes, I. H., Elsik, C. G., & Lewis, S. E. ( 2019 ). Apollo: Democratizing genome annotation. PLoS Computational Biology, 15 ( 2 ), e1006790. https://doi.org/10.1371/journal.pcbi.1006790
dc.identifier.citedreferenceDutton, G. F. ( 1980 ). Glucuronidation of drugs and other compounds. CRC Press.
dc.identifier.citedreferenceFarrer, R. A. ( 2017 ). Synima: A synteny imaging tool for annotated genome assemblies. BMC Bioinformatics, 18 ( 1 ), 507. https://doi.org/10.1186/s12859‐017‐1939‐7
dc.identifier.citedreferenceFlynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. ( 2020 ). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 17 ), 9451 – 9457. https://doi.org/10.1073/pnas.1921046117
dc.identifier.citedreferenceFoley, J. W., Iason, G. R., & McArthur, C. ( 1999 ). Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: How far have we come in 25 years? In H.‐J. G. Jung & G. C. Fahey (Eds.), Nutritional ecology of herbivore (pp. 130 – 209 ). American Society of Animal Science.
dc.identifier.citedreferenceFreeland, W. J., & Janzen, D. H. ( 1974 ). Strategies in herbivory by mammals the role of plant secondary compounds. The American Naturalist, 108 ( 961 ), 269 – 289. https://doi.org/10.1086/282907
dc.identifier.citedreferenceGalewski, T., Tilak, M., Sanchez, S., Chevret, P., Paradis, E., & Douzery, E. J. ( 2006 ). The evolutionary radiation of Arvicolinae rodents (voles and lemmings): Relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evolutionary Biology, 6 ( 1 ), 80. https://doi.org/10.1186/1471‐2148‐6‐80
dc.identifier.citedreferenceGamage, N., Barnett, A., Hempel, N., Duggleby, R. G., Windmill, K. F., Martin, J. L., & McManus, M. E. ( 2006 ). Human sulfotransferases and their role in chemical metabolism. Toxicological Sciences, 90 ( 1 ), 5 – 22. https://doi.org/10.1093/toxsci/kfj061
dc.identifier.citedreferenceGremme, G., Brendel, V., Sparks, M. E., & Kurtz, S. ( 2005 ). Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology, 47 ( 15 ), 965 – 978. https://doi.org/10.1016/j.infsof.2005.09.005
dc.identifier.citedreferenceGremme, G., Steinbiss, S., & Kurtz, S. ( 2013 ). GenomeTools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10 ( 3 ), 645 – 656. https://doi.org/10.1109/TCBB.2013.68
dc.identifier.citedreferenceHagemeyer, C. E., Rosenbrock, H., Ditter, M., Knoth, R., & Volk, B. ( 2003 ). Predominantly neuronal expression of cytochrome P450 isoforms cyp3a11 and cyp3a13 in mouse brain. Neuroscience, 117 ( 3 ), 521 – 529. https://doi.org/10.1016/S0306‐4522(02)00955‐7
dc.identifier.citedreferenceHaley, S. L., Lamb, J. G., Franklin, M. R., Constance, J. E., & Dearing, M. D. ( 2008 ). “Pharm‐ecology” of diet shifting: Biotransformation of plant secondary compounds in creosote ( Larrea tridentata ) by a woodrat herbivore, Neotoma lepida. Physiological and Biochemical Zoology, 81 ( 5 ), 584 – 593. https://doi.org/10.1086/589951
dc.identifier.citedreferenceHall, E. R. ( 1982 ). The mammals of North America. Blackburn Press.
dc.identifier.citedreferenceHernandez, D., Janmohamed, A., Chandan, P., Phillips, I. R., & Shephard, E. A. ( 2004 ). Organization and evolution of the flavin‐containing monooxygenase genes of human and mouse: Identification of novel gene and pseudogene clusters. Pharmacogenetics, 14 ( 2 ), 117 – 130. https://doi.org/10.1097/00008571‐200402000‐00006
dc.identifier.citedreferenceHoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. ( 2019 ). Whole‐genome annotation with BRAKER. In M. Kollmar (Ed.), Gene prediction (Vol. 1962, pp. 65 – 95 ). Springer. https://doi.org/10.1007/978‐1‐4939‐9173‐0_5
dc.identifier.citedreferenceHoffman, S. M. G., & Hu, S. ( 2007 ). Dynamic evolution of the CYP2ABFGST gene cluster in primates. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 616 ( 1–2 ), 133 – 138. https://doi.org/10.1016/j.mrfmmm.2006.11.004
dc.identifier.citedreferenceHolchek, J. L., Munshikpu, A. V., Saiwana, L., Nunez Hernandez, G., Valdez, R., Wallace, J. D., & Cardenas, M. ( 1990 ). Influences of six shrub diets varying in phenol content on intake and nitrogen retention by goats. Tropical Grasslands, 24 ( 93–98 ), Article 93–98.
dc.identifier.citedreferenceHu, S., Wang, H., Knisely, A. A., Reddy, S., Kovacevic, D., Liu, Z., & Hoffman, S. M. G. ( 2008 ). Evolution of the CYP2ABFGST gene cluster in rat, and a fine‐scale comparison among rodent and primate species. Genetica, 133 ( 2 ), 215 – 226. https://doi.org/10.1007/s10709‐007‐9206‐x
dc.identifier.citedreferenceHuang, S., Howington, M. B., Dobry, C. J., Evans, C. R., & Leiser, S. F. ( 2021 ). Flavin‐containing monooxygenases are conserved regulators of stress resistance and metabolism. Frontiers in Cell and Developmental Biology, 9, 630188. https://doi.org/10.3389/fcell.2021.630188
dc.identifier.citedreferenceHuo, L., Liu, J., Dearing, M. D., Szklarz, G. D., Halpert, J. R., & Wilderman, P. R. ( 2017 ). Rational re‐engineering of the O‐dealkylation of 7‐Alkoxycoumarin derivatives by cytochromes P450 2B from the desert woodrat Neotoma lepida. Biochemistry, 56 ( 16 ), 2238 – 2246. https://doi.org/10.1021/acs.biochem.7b00097
dc.identifier.citedreferenceIshikawa, T. ( 1992 ). The ATP‐dependent glutathione S‐conjugate export pump. Trends in Biochemical Sciences, 17 ( 11 ), 463 – 468. https://doi.org/10.1016/0968‐0004(92)90489‐V
dc.identifier.citedreferenceJones, P., Binns, D., Chang, H.‐Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador‐Vegas, A., Scheremetjew, M., Yong, S.‐Y., Lopez, R., & Hunter, S. ( 2014 ). InterProScan 5: Genome‐scale protein function classification. Bioinformatics, 30 ( 9 ), 1236 – 1240. https://doi.org/10.1093/bioinformatics/btu031
dc.identifier.citedreferenceJurka, J. ( 1998 ). Repeats in genomic DNA: Mining and meaning. Current Opinion in Structural Biology, 8 ( 3 ), 333 – 337. https://doi.org/10.1016/S0959‐440X(98)80067‐5
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30 ( 4 ), 772 – 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceKatzung, B. G. (Ed.), ( 2018 ). Basic & clinical pharmacology (fourteenth edition). McGraw Hill Education.
dc.identifier.citedreferenceKent, W. J. ( 2002 ). BLAT—The BLAST‐like alignment tool. Genome Research, 12 ( 4 ), 656 – 664. https://doi.org/10.1101/gr.229202
dc.identifier.citedreferenceKerr, I. D., Haider, A. J., & Gelissen, I. C. ( 2011 ). The ABCG family of membrane‐associated transporters: You don’t have to be big to be mighty: The biochemistry and pharmacology of ABCG proteins. British Journal of Pharmacology, 164 ( 7 ), 1767 – 1779. https://doi.org/10.1111/j.1476‐5381.2010.01177.x
dc.identifier.citedreferenceKim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. ( 2019 ). Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype. Nature Biotechnology, 37 ( 8 ), 907 – 915. https://doi.org/10.1038/s41587‐019‐0201‐4
dc.identifier.citedreferenceKitanovic, S., Orr, T. J., Spalink, D., Cocke, G. B., Schramm, K., Wilderman, P. R., Halpert, J. R., & Dearing, M. D. ( 2018 ). Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores. Molecular Ecology, 27 ( 3 ), 723 – 736. https://doi.org/10.1111/mec.14480
dc.identifier.citedreferenceKlaassen, C. D. (Ed.), ( 2001 ). Casarett and Doull’s toxicology: The basic science of poisons. McGraw Hill.
dc.identifier.citedreferenceKoren, S., Rhie, A., Walenz, B. P., Dilthey, A. T., Bickhart, D. M., Kingan, S. B., Hiendleder, S., Williams, J. L., Smith, T. P. L., & Phillippy, A. M. ( 2018 ). De novo assembly of haplotype‐resolved genomes with trio binning. Nature Biotechnology, 36 ( 12 ), 1174 – 1182. https://doi.org/10.1038/nbt.4277
dc.identifier.citedreferenceKoukouritaki, S. B., Simpson, P., Yeung, C. K., Rettie, A. E., & Hines, R. N. ( 2002 ). Human hepatic flavin‐containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatric Research, 51 ( 2 ), 236 – 243. https://doi.org/10.1203/00006450‐200202000‐00018
dc.identifier.citedreferenceKriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. ( 2019 ). OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47 ( D1 ), D807 – D811. https://doi.org/10.1093/nar/gky1053
dc.identifier.citedreferenceKurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. ( 2004 ). Versatile and open software for comparing large genomes. Genome Biology, 2004 ( 5 ), R12. https://doi.org/10.1186/gb‐2004‐5‐2‐r12
dc.identifier.citedreferenceLevy Karin, E., Mirdita, M., & Söding, J. ( 2020 ). MetaEuk—Sensitive, high‐throughput gene discovery, and annotation for large‐scale eukaryotic metagenomics. Microbiome, 8 ( 1 ), 48. https://doi.org/10.1186/s40168‐020‐00808‐x
dc.identifier.citedreferenceLi, H. ( 2018 ). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34 ( 18 ), 3094 – 3100. https://doi.org/10.1093/bioinformatics/bty191
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. ( 2009 ). The sequence alignment/map format and SAMtools. Bioinformatics, 25 ( 16 ), 2078 – 2079. https://doi.org/10.1093/bioinformatics/btp352
dc.identifier.citedreferenceLi, S., Zhang, W., Yin, X., Xing, S., Xie, H. Q., Cao, Z., & Zhao, B. ( 2015 ). Mouse ATP‐binding cassette (ABC) transporters conferring multi‐drug resistance. Anti‐Cancer Agents in Medicinal Chemistry, 15 ( 4 ), 423 – 432.
dc.identifier.citedreferenceLong, A. D., Baldwin‐Brown, J., Tao, Y., Cook, V. J., Balderrama‐Gutierrez, G., Corbett‐Detig, R., Mortazavi, A., & Barbour, A. G. ( 2019 ). The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. Science Advances, 5 ( 7 ), eaaw6441. https://doi.org/10.1126/sciadv.aaw6441
dc.identifier.citedreferenceWang, H., & LeCluyse, E. L. ( 2003 ). Role of orphan nuclear receptors in the regulation of drug‐metabolising enzymes. Clinical Pharmacokinetics, 42 ( 15 ), 1331 – 1357. https://doi.org/10.2165/00003088‐200342150‐00003
dc.identifier.citedreferenceMabry, T. J., Difeo, D. R. J., Sakakibara, M., Bohnstedt, C. F. J., & Seigler, D. ( 1977 ). The natural products chemistry of Larrea. In T. J. H. H. Mabry & J. R. D. R. Difeo (Eds.), Us/Ibp (international biological program) synthesis series, vol. 6. Creosote bush. Biology and chemistry of Larrea in New World deserts. Xvi+284p. Illus. Maps. Dowden, Hutchinson and Ross, Inc.: Stroudsburg, Pa., USA (Dist. By Academic Press: New York, N.Y., USA; London, England) Isbn 0–87933–282‐4. 1977. 115–134. (PREV197815053986 Copyright BIOSIS 2003.).
dc.identifier.citedreferenceMagnanou, E., Malenke, J. R., & Dearing, M. D. ( 2009 ). Expression of biotransformation genes in woodrat ( Neotoma ) herbivores on novel and ancestral diets: Identification of candidate genes responsible for dietary shifts. Molecular Ecology, 18 ( 11 ), 2401 – 2414. https://doi.org/10.1111/j.1365‐294X.2009.04171.x
dc.identifier.citedreferenceMalenke, J. R., Magnanou, E., Thomas, K., & Dearing, M. D. ( 2012 ). Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat ( Neotoma lepida ). PLoS One, 7 ( 8 ), e41510. https://doi.org/10.1371/journal.pone.0041510
dc.identifier.citedreferenceMangione, A. M., Dearing, D., & Karasov, W. ( 2001 ). Detoxification in relation to toxin tolerance in desert woodrats eating creosote bush. Journal of Chemical Ecology, 27 ( 12 ), 2559 – 2578. https://doi.org/10.1023/A:1013639817958
dc.identifier.citedreferenceMarçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. ( 2018 ). MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 14 ( 1 ), e1005944. https://doi.org/10.1371/journal.pcbi.1005944
dc.identifier.citedreferenceMarçais, G., & Kingsford, C. ( 2011 ). A fast, lock‐free approach for efficient parallel counting of occurrences of k ‐mers. Bioinformatics, 27 ( 6 ), 764 – 770. https://doi.org/10.1093/bioinformatics/btr011
dc.identifier.citedreferenceMarsh, K. J., Wallis, I. R., Andrew, R. L., & Foley, W. J. ( 2006 ). The detoxification limitation hypothesis: Where did it come from and where is it going? Journal of Chemical Ecology, 32 ( 6 ), 1247 – 1266. https://doi.org/10.1007/s10886‐006‐9082‐3
dc.identifier.citedreferenceMartin, M. ( 2011 ). Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.Journal, 17 ( 1 ), 10. https://doi.org/10.14806/ej.17.1.200
dc.identifier.citedreferenceMascarello, J. T., & Hsu, T. C. ( 1976 ). Chromosome evolution in woodrats, genus Neotoma (Rodentia: Cricetidae). Evolution, 30 ( 1 ), 152 – 169. https://doi.org/10.1111/j.1558‐5646.1976.tb00892.x
dc.identifier.citedreferenceMeech, R., Hu, D. G., McKinnon, R. A., Mubarokah, S. N., Haines, A. Z., Nair, P. C., Rowland, A., & Mackenzie, P. I. ( 2019 ). The UDP‐glycosyltransferase (UGT) superfamily: New members, new functions, and novel paradigms. Physiological Reviews, 99 ( 2 ), 1153 – 1222. https://doi.org/10.1152/physrev.00058.2017
dc.identifier.citedreferenceMickley, L., Jain, P., Miyake, K., Schriml, L. M., Rao, K., Fojo, T., Bates, S., & Dean, M. ( 2001 ). An ATP‐binding cassette gene (ABCG3) closely related to the multidrug transporter ABCG2 (MXR/ABCP) has an unusual ATP‐binding domain. Mammalian Genome, 12 ( 1 ), 86 – 88. https://doi.org/10.1007/s003350010237
dc.identifier.citedreferenceMoore, B. D., Wiggins, N. L., Marsh, K. J., Dearing, M. D., & Foley, W. J. ( 2015 ). Translating physiological signals to changes in feeding behaviour in mammals and the future effects of global climate change. Animal Production Science, 55 ( 3 ), 272. https://doi.org/10.1071/AN14487
dc.identifier.citedreferenceMouse Genome Sequencing Consortium. ( 2002 ). Initial sequencing and comparative analysis of the mouse genome. Nature, 420 ( 6915 ), 520 – 562. https://doi.org/10.1038/nature01262
dc.identifier.citedreferenceNCBI Resource Coordinators. ( 2016 ). Database resources of the National Center for biotechnology information. Nucleic Acids Research, 44 ( D1 ), D7 – D19. https://doi.org/10.1093/nar/gkv1290
dc.identifier.citedreferenceNebert, D. W., & Vasiliou, V. ( 2004 ). Analysis of the glutathione S‐transferase (GST) gene family. Human Genomics, 1 ( 6 ), 460 – 464. https://doi.org/10.1186/1479‐7364‐1‐6‐460
dc.identifier.citedreferenceNielsen, D. P., & Matocq, M. D. ( 2021 ). Differences in dietary composition and preference maintained despite gene flow across a woodrat hybrid zone. Ecology and Evolution, 11 ( 9 ), 4909 – 4919. https://doi.org/10.1002/ece3.7399
dc.identifier.citedreferencePatton, J. L., Huckaby, D. G., & Álvarez‐Castañeda, S. T. ( 2007 ). The evolutionary history and a systematic revision of woodrats of the Neotoma lepida group. University of California Press.
dc.identifier.citedreferenceRamírez, F., Dündar, F., Diehl, S., Grüning, B. A., & Manke, T. ( 2014 ). deepTools: A flexible platform for exploring deep‐sequencing data. Nucleic Acids Research, 42 ( W1 ), W187 – W191. https://doi.org/10.1093/nar/gku365
dc.identifier.citedreferenceRice, E. S., Koren, S., Rhie, A., Heaton, M. P., Kalbfleisch, T. S., Hardy, T., Hackett, P. H., Bickhart, D. M., Rosen, B. D., Ley, B. V., Maurer, N. W., Green, R. E., Phillippy, A. M., Petersen, J. L., & Smith, T. P. L. ( 2020 ). Continuous chromosome‐scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. GigaScience, 9 ( 4 ), giaa029. https://doi.org/10.1093/gigascience/giaa029
dc.identifier.citedreferenceVizueta, J., Sánchez‐Gracia, A., & Rozas, J. ( 2020 ). BITACORA: A comprehensive tool for the identification and annotation of gene families in genome assemblies. Molecular Ecology Resources, 20 ( 5 ), 1445 – 1452. https://doi.org/10.1111/1755‐0998.13202
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.