Show simple item record

Repeatability and Reproducibility Assessment of the Apparent Diffusion Coefficient in the Prostate: A Trial of the ECOG‐ACRIN Research Group (ACRIN 6701)

dc.contributor.authorBoss, Michael A.
dc.contributor.authorSnyder, Bradley S.
dc.contributor.authorKim, Eunhee
dc.contributor.authorFlamini, Dena
dc.contributor.authorEnglander, Sarah
dc.contributor.authorSundaram, Karthik M.
dc.contributor.authorGumpeni, Naveen
dc.contributor.authorPalmer, Suzanne L.
dc.contributor.authorChoi, Haesun
dc.contributor.authorFroemming, Adam T.
dc.contributor.authorPersigehl, Thorsten
dc.contributor.authorDavenport, Matthew S.
dc.contributor.authorMalyarenko, Dariya
dc.contributor.authorChenevert, Thomas L.
dc.contributor.authorRosen, Mark A.
dc.date.accessioned2022-09-26T16:04:46Z
dc.date.available2023-10-26 12:04:44en
dc.date.available2022-09-26T16:04:46Z
dc.date.issued2022-09
dc.identifier.citationBoss, Michael A.; Snyder, Bradley S.; Kim, Eunhee; Flamini, Dena; Englander, Sarah; Sundaram, Karthik M.; Gumpeni, Naveen; Palmer, Suzanne L.; Choi, Haesun; Froemming, Adam T.; Persigehl, Thorsten; Davenport, Matthew S.; Malyarenko, Dariya; Chenevert, Thomas L.; Rosen, Mark A. (2022). "Repeatability and Reproducibility Assessment of the Apparent Diffusion Coefficient in the Prostate: A Trial of the ECOG‐ACRIN Research Group (ACRIN 6701)." Journal of Magnetic Resonance Imaging 56(3): 668-679.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/174833
dc.publisherJohn Wiley & Sons, Inc.
dc.titleRepeatability and Reproducibility Assessment of the Apparent Diffusion Coefficient in the Prostate: A Trial of the ECOG‐ACRIN Research Group (ACRIN 6701)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174833/1/jmri28093.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174833/2/jmri28093_am.pdf
dc.identifier.doi10.1002/jmri.28093
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceBonekamp D, Nagae LM, Degaonkar M, et al. Diffusion tensor imaging in children and adolescents: Reproducibility, hemispheric, and age‐related differences. Neuroimage 2007; 34 ( 2 ): 733 ‐ 742.
dc.identifier.citedreferenceMalyarenko D, Galbán CJ, Londy FJ, et al. Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom. J Magn Reson Imaging. 2013; 37 ( 5 ): 1238 ‐ 1246. https://doi.org/10.1002/jmri.23825
dc.identifier.citedreferenceHolz M, Heil SR, Sacco A. Temperature‐dependent self‐diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2000; 2 ( 20 ): 4740 ‐ 4742.
dc.identifier.citedreferenceNewitt DC, Zhang Z, Gibbs JE, et al. Test‐retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial. J Magn Reson Imaging 2018; 49 ( 6 ): 1617 ‐ 1628.
dc.identifier.citedreferenceHylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I‐SPY TRIAL. Radiology 2012; 263 ( 3 ): 663 ‐ 672.
dc.identifier.citedreferencePartridge SC, Zhang Z, Newitt DC, et al. Diffusion‐weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: The ACRIN 6698 multicenter trial. Radiology 2018; 289 ( 3 ): 618 ‐ 627.
dc.identifier.citedreferenceLe Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval‐Jeantet M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161 ( 2 ): 401 ‐ 407.
dc.identifier.citedreferenceSullivan DC, Obuchowski NA, Kessler LG, et al. Metrology standards for quantitative imaging biomarkers. Radiology 2015; 277 ( 3 ): 813 ‐ 825.
dc.identifier.citedreferenceBarnhart HX, Barboriak DP. Applications of the repeatability of quantitative imaging biomarkers: A review of statistical analysis of repeat data sets. Transl Oncol 2009; 2 ( 4 ): 231 ‐ 235.
dc.identifier.citedreferenceShoukri MM, Elkum N, Walter SD. Interval estimation and optimal design for the within‐subject coefficient of variation for continuous and binary variables. BMC Med Res Methodol 2006; 6: 24.
dc.identifier.citedreferenceQuan H, Shih WJ. Assessing reproducibility by the within‐subject coefficient of variation with random effects models. Biometrics 1996; 52 ( 4 ): 1195 ‐ 1203.
dc.identifier.citedreferenceShrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979; 86 ( 2 ): 420 ‐ 428.
dc.identifier.citedreferenceKoo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15 ( 2 ): 155 ‐ 163.
dc.identifier.citedreferenceBland JM. Comparing within‐subject variances in a study to compare two methods of measurement. 2010. Accessed on September, 2, 2020. Available from: https://www-users.york.ac.uk/~mb55/meas/compsd.htm
dc.identifier.citedreferenceSpearman Rank Correlation Coefficient. The concise encyclopedia of statistics. New York: Springer; 2008. p 502 ‐ 505.
dc.identifier.citedreferenceMalyarenko DI, Pang Y, Amouzandeh G, Chenevert TL. Numerical DWI phantoms to optimize accuracy and precision of quantitative parametric maps for non‐Gaussian diffusion. Medical imaging 2020: Image processing. Volume 11313. Bellingham, WA: International Society for Optics and Photonics; 2020. p. 113130W.
dc.identifier.citedreferencePfefferbaum A, Adalsteinsson E, Sullivan EV. Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J Magn Reson Imaging 2003; 18 ( 4 ): 427 ‐ 433.
dc.identifier.citedreferencePaldino MJ, Barboriak D, Desjardins A, Friedman HS, Vredenburgh JJ. Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme. J Magn Reson Imaging 2009; 29 ( 5 ): 1199 ‐ 1205.
dc.identifier.citedreferenceSorace AG, Wu C, Barnes SL, et al. Repeatability, reproducibility, and accuracy of quantitative mri of the breast in the community radiology setting. J Magn Reson Imaging 2018; 48 ( 3 ): 695 ‐ 707.
dc.identifier.citedreferenceBarrett T, Lawrence EM, Priest AN, et al. Repeatability of diffusion‐weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis. Eur J Radiol 2019; 110: 22 ‐ 29.
dc.identifier.citedreferenceFedorov A, Vangel MG, Tempany C, Fennessy F. Multiparametric MRI of the prostate: Repeatability of volume and apparent diffusion coefficient quantification. Invest Radiol 2017; 52 ( 9 ): 538 ‐ 546.
dc.identifier.citedreferenceGibbs P, Pickles MD, Turnbull LW. Repeatability of echo‐planar‐based diffusion measurements of the human prostate at 3T. Magn Reson Imaging 2007; 25 ( 10 ): 1423 ‐ 1429.
dc.identifier.citedreferenceMedved M, Sammet S, Yousuf A, Oto A. MR imaging of the prostate and adjacent anatomic structures before, during, and after ejaculation: Qualitative and quantitative evaluation. Radiology 2014; 271 ( 2 ): 452 ‐ 460.
dc.identifier.citedreferenceVollenbrock SE, Voncken FEM, Bartels LW, Beets‐Tan RGH, Bartels‐Rutten A. Diffusion‐weighted MRI with ADC mapping for response prediction and assessment of oesophageal cancer: A systematic review. Radiother Oncol 2020; 142: 17 ‐ 26.
dc.identifier.citedreferenceKlompenhouwer EG, Dresen RC, Verslype C, et al. Transarterial Radioembolization following chemoembolization for unresectable hepatocellular carcinoma: Response based on apparent diffusion coefficient change is an independent predictor for survival. Cardiovasc Intervent Radiol 2018; 41 ( 11 ): 1716 ‐ 1726.
dc.identifier.citedreferenceSaleh MM, Abdelrahman TM, Madney Y, Mohamed G, Shokry AM, Moustafa AF. Multiparametric MRI with diffusion‐weighted imaging in predicting response to chemotherapy in cases of osteosarcoma and Ewing’s sarcoma. Br J Radiol 2020; 93 ( 1115 ): 20200257.
dc.identifier.citedreferenceSadinski M, Medved M, Karademir I, et al. Short‐term reproducibility of apparent diffusion coefficient estimated from diffusion‐weighted MRI of the prostate. Abdom Imaging 2015; 40 ( 7 ): 2523 ‐ 2528.
dc.identifier.citedreferenceMichoux NF, Ceranka JW, Vandemeulebroucke J, et al. Repeatability and reproducibility of ADC measurements: A prospective multicenter whole‐body‐MRI study. Eur Radiol 2021; 31 ( 7 ): 4514 ‐ 4527.
dc.identifier.citedreferenceTamada T, Huang C, Ream JM, Taffel M, Taneja SS, Rosenkrantz AB. Apparent diffusion coefficient values of prostate cancer: Comparison of 2D and 3D ROIs. Am J Roentgenol 2018; 210 ( 1 ): 113 ‐ 117.
dc.identifier.citedreferenceLe Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval‐Jeantet M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161 ( 2 ): 401 ‐ 407.
dc.identifier.citedreferenceStejskal EO, Tanner JE. Spin diffusion measurements: Spin echoes in the presence of a time‐dependent field gradient. J Chem Phys 1965; 42 ( 1 ): 288 ‐ 292.
dc.identifier.citedreferenceLe Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: Clinical applications. AJR Am J Roentgenol 1992; 159 ( 3 ): 591 ‐ 599.
dc.identifier.citedreferenceBarentsz JO, Weinreb JC, Verma S, et al. Synopsis of the PI‐RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 2016; 69 ( 1 ): 41 ‐ 49.
dc.identifier.citedreferencePadhani AR, Weinreb J, Rosenkrantz AB, Villeirs G, Turkbey B, Barentsz J. Prostate imaging‐reporting and data system steering committee: PI‐RADS v2 status update and future directions. Eur Urol 2019; 75 ( 3 ): 385 ‐ 396.
dc.identifier.citedreferencePI‐RADS Committee. PI‐RADS: Prostate Imaging–Reporting and Data System, Version 2.1. 2019. Accessed on June 23, 2021. Volume 2021. Available from: https://www.acr.org/-/media/ACR/Files/RADS/Pi-RADS/PIRADS-V2-1.pdf?la=en
dc.identifier.citedreferenceQIBA DWI Biomarker Committee. QIBA Profile: Diffusion‐Weighted Magnetic Resonance Imaging (DWI), Consensus Version. 2020. Accessed on January 6, 2021. Available from: http://qibawiki.rsna.org/images/6/63/QIBA_DWIProfile_Consensus_Dec2019_Final.pdf
dc.identifier.citedreferenceKessler LG, Barnhart HX, Buckler AJ, et al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 2015; 24 ( 1 ): 9 ‐ 26.
dc.identifier.citedreferenceBIPM I, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML. The international vocabulary of metrology—basic and general concepts and associated terms (VIM), 3rd edn. 2012. Available from: http://www.bipm.org/vim
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.