Show simple item record

Modeling of fatigue failure mode in U‐rib to deck joints in orthotropic bridge structures

dc.contributor.authorYang, Haibo
dc.contributor.authorWang, Ping
dc.contributor.authorQian, Hongliang
dc.contributor.authorDong, Pingsha
dc.date.accessioned2022-09-26T16:04:51Z
dc.date.available2023-10-26 12:04:47en
dc.date.available2022-09-26T16:04:51Z
dc.date.issued2022-09
dc.identifier.citationYang, Haibo; Wang, Ping; Qian, Hongliang; Dong, Pingsha (2022). "Modeling of fatigue failure mode in U‐rib to deck joints in orthotropic bridge structures." Fatigue & Fracture of Engineering Materials & Structures 45(9): 2721-2733.
dc.identifier.issn8756-758X
dc.identifier.issn1460-2695
dc.identifier.urihttps://hdl.handle.net/2027.42/174834
dc.description.abstractVarious fatigue failure modes (i.e., cracking position and orientation with respect to a weld) can develop in welded rib to deck connections in orthotropic bridge deck structures. After demonstrating its effectiveness in correlating fatigue test data covering different failure modes, the master S‐N curve method was then adopted in this study for determining the critical failure mode in welded U‐rib to deck connections. These include considerations of additional failure modes potentially present in double‐sided welds between U‐rib and deck versus the traditional single‐sided weld design. The effects of weld penetrations and test loading conditions on failure mode development have been quantitatively established by means of the master S‐N curve method.HighlightsThe master S‐N curve method is employed for capturing typical failure modes of OBD.Anti‐fatigue performance variations between double‐ and single‐sided joints are studied.A parameterized analysis of weld penetration and fillet size effects is conducted.
dc.publisherWiley Periodicals, Inc.
dc.publisherPeople’s Communications Press
dc.subject.otherfatigue failure mode
dc.subject.othermaster S‐N curve
dc.subject.otherorthotropic bridge deck
dc.subject.otherbridge engineering
dc.subject.otherdouble‐sided weld
dc.subject.othertraction structural stress
dc.titleModeling of fatigue failure mode in U‐rib to deck joints in orthotropic bridge structures
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174834/1/ffe13776.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174834/2/ffe13776_am.pdf
dc.identifier.doi10.1111/ffe.13776
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structures
dc.identifier.citedreferenceCheng B, Ye XH, Cao XE, Mbako DD, Cao YS. Experimental study on fatigue failure of rib‐to‐deck welded connections in orthotropic steel bridge decks. Int J Fatigue. 2017; 103: 157 ‐ 167.
dc.identifier.citedreferencePei X, Dong P. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects. Fatigue Fract Eng Mater Struct. 2019; 42 ( 1 ): 239 ‐ 255.
dc.identifier.citedreferenceKyuba H, Dong P. Equilibrium‐equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint. Int J Fatigue. 2005; 27 ( 1 ): 85 ‐ 94.
dc.identifier.citedreferenceDong P, Hong JK, Osage DA, Dewees D, Prager M. The Master S‐N curve method an implementation for fatigue evaluation of welded components in the Asme B&Pv Code, Section Viii, Division 2, and API 579–1/Asme Ffs‐1. WRC BULLETIN, 2010.
dc.identifier.citedreferenceLi J, Zhang Q, Yuan DY, Guo YW, Bu YZ. Fatigue resistance evaluation for structural system of orthotropic steel bridge deck based on equivalent structural stress. China J High Trans. 2018; 31: 134 ‐ 143.
dc.identifier.citedreferenceKim MH, Kang SW. Testing and analysis of fatigue behavior in edge details: A comparative study using hot spot and structural stresses. Kyobu Geka, the Japan J Thor Surg. 2008; 61: 331 ‐ 334.
dc.identifier.citedreferenceLi J, Zhang Q, Bao Y, Zhu JZ, Chen L, Bu YZ. An equivalent structural stress‐based fatigue evaluation framework for rib‐to‐deck welded joints in orthotropic steel deck. Eng Struct. 2019; 196: 109304.
dc.identifier.citedreferenceBemessung Und Konstruktion von Stahlbauten: DIN EN 1993; Eurocode 3. 1–7. Plattenförmige Bauteile Mit Querbelastung: Deutsche Fassung EN 1993–:2007+AC:2009. 2010. Deutsche Norm. DIN EN 1993.
dc.identifier.citedreferenceCheng B, Cao X, Ye XH, Cao YS. Fatigue tests of welded connections between longitudinal stringer and deck plate in railway bridge orthotropic steel decks. Eng Struct. 2017; 153: 32 ‐ 42.
dc.identifier.citedreferenceZhang Q, Guo YW, Li J, Yuan DY, Bu YZ. Fatigue crack propagation characteristics of double‐sided welded joints between steel bridge decks and longitudinal ribs. China J High Trans. 2019; 32: 49 ‐ 56.
dc.identifier.citedreferenceLiu Y, Chen F, Lu N, Wang L, Wang BW. Fatigue performance of rib‐to‐deck double‐side welded joints in orthotropic steel decks. Eng Fail Anal. 2019; 105: 127 ‐ 142.
dc.identifier.citedreferenceYang H, Wang P, Qian H. Fatigue behavior of typical details of orthotropic steel bridges in multiaxial stress states using traction structural stress. Int J Fatigue. 2020; 141: 105862.
dc.identifier.citedreferenceYang H, Wang P, Qian H. Fatigue property analysis of U rib‐to‐crossbeam connections under heavy traffic vehicle load considering in‐plane shear stress. Steel Compos Struct. 2021; 38: 271 ‐ 280.
dc.identifier.citedreferenceYang HB, Wang P, Qian HL, Niu S, Dong PS. An experimental investigation into fatigue behaviors of single‐ and double‐sided U rib welds in orthotropic bridge decks. Int J Fatigue. 2022; 159: 106827.
dc.identifier.citedreferenceYou R, Liu P, Zhang D, Feng J, Zhu A. Experiments of fatigue performance of U‐rib‐to‐deck connection with inner sides welding in orthotropic steel bridge deck. J China Foreign High. 2018; 38: 174 ‐ 179.
dc.identifier.citedreferenceDong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int J Fatigue. 2001; 23 ( 10 ): 865 ‐ 876.
dc.identifier.citedreferenceDong P. A robust structural stress method for fatigue analysis of offshore/marine structures. J Offshore Mech Arct Eng. 2005; 127 ( 1 ): 68 ‐ 74.
dc.identifier.citedreferenceDong P, Prager M, Osage D. The design master S‐N curve in ASME div 2 rewrite and its validations. Weld World. 2007; 51 ( 5‐6 ): 53 ‐ 63.
dc.identifier.citedreferenceTamai S, Yagata Y, Hosoya T. New technologies in fabrication of steel bridges in Japan. J Constr Steel Res. 2002; 58 ( 1 ): 151 ‐ 192.
dc.identifier.citedreferenceYang HB, Wang P, Qian HL, Niu S, Dong PS. A Study of Fatigue Crack Propagation Paths at U‐Rib Welds in Orthotropic Bridge Decks using a Phased‐Array Imaging Technique. Theor Appl Fract Mech. 2022; 119: 103310.
dc.identifier.citedreferenceWang CS, Fu BN, Zhang Q, Feng Y. Fatigue test on full‐scale orthotropic steel bridge deck. China J High Trans. 2013; 26: 69 ‐ 76.
dc.identifier.citedreferenceWei ZZ, Pei XJ, Qian XD, Xing SZ, Feng LY, Jin H. Traction stress‐based fatigue failure mode identification of load‐carrying welded cruciform joints. Int J Fatigue. 2022; 161: 106897.
dc.identifier.citedreferenceMaddox SJ. The fatigue behavior of trapezoidal stiffener to deck plate welds in orthotropic bridge decks. 1974.
dc.identifier.citedreferenceKainuma S, Yang M, Jeong YS, Inokuchi S, Kawabata A, Uchida D. Experimental investigation for structural parameter effects on fatigue behavior of rib‐to‐deck welded joints in orthotropic steel decks. Eng Failure Ana. 2017; 79: 520 ‐ 537.
dc.identifier.citedreferenceYa S, Yamada K, Ishikawa T. Fatigue evaluation of rib‐to‐deck welded joints of orthotropic steel bridge deck. J Bri Eng. 2011; 16 ( 4 ): 492 ‐ 499.
dc.identifier.citedreferenceXing S, Dong P. A fatigue failure mode transition criterion for sizing load‐carrying fillet‐welded connections. Vol. 1598. ASTM Special Tech Pub; 2017: 258 ‐ 277.
dc.identifier.citedreferenceShen S. Recent advances on the fundamental research of spatial structures in China. Eng Struct. 2006; 2: 93 ‐ 103.
dc.identifier.citedreferenceZhu A, Li M, Zhu H, Xu GY, Xiao HZ, Ge HB. Fatigue behavior of orthotropic steel bridge decks with inner bulkheads. J Constr Steel Res. 2018; 146: 63 ‐ 75.
dc.identifier.citedreferencePfeil MS, Battista RC, Mergulhao AJR. Stress concentration in steel bridge orthotropic decks. J Constr Steel Res. 2005; 61 ( 8 ): 1172 ‐ 1184.
dc.identifier.citedreferenceJi B, Liu R, Chen C, Maeno H, Chen XF. Evaluation on root‐deck fatigue of orthotropic steel bridge deck. J Constr Steel Res. 2013; 90: 174 ‐ 183.
dc.identifier.citedreferenceShan C, Yi Y. Stress concentration analysis of an orthotropic sandwich bridge deck under wheel loading. J Constr Steel Res. 2016; 122: 488 ‐ 494.
dc.identifier.citedreferenceMaljaars J, Gration D, Vonk E, Dooren F. Crack growth prediction of deck plate‐stiffener joints in orthotropic steel bridge decks. IABSE Symp Report. 2013; 99: 1571 ‐ 1578.
dc.identifier.citedreferenceZhang Q, Bu Y, Li Q. Research progress on fatigue of orthotropic steel bridge deck. China J Highway Trans. 2017; 30: 14 ‐ 30.
dc.identifier.citedreferenceMeng F, Zhang QH, Xie HB, Zhang L, Li JP. Key Technology of Anti‐Fatigue of Orthotropic Steel Bridge Deck. Beijing: People’s Communications Press; 2014: 1 ‐ 30.
dc.identifier.citedreferenceYang HB, Wang P, Qian HL, Dong PS. Analysis of fatigue test conditions for reproducing weld toe cracking into U‐rib wall in orthotropic bridge decks. Int J Fatigue. 2022; 162: 106976.
dc.identifier.citedreferenceVan Puymbroeck E, Van Staen G, Iqbal N, Backer HD. Residual weld stresses in stiffener‐to‐deck plate weld of an orthotropic steel deck. J Constr Steel Res. 2019; 159: 534 ‐ 547.
dc.identifier.citedreferenceShan C, Yi YH. An experimental and numerical study on the behavior of a continuous orthotropic bridge deck with sandwich construction. Thin‐Walled Struct. 2017; 111: 138 ‐ 144.
dc.identifier.citedreferenceWu W, Kolstein H, Veljkovic M. Fatigue resistance of rib‐to‐deck welded joint in OSDs, analyzed by fracture mechanics. J Constr Steel Res. 2019; 162: 105700.
dc.identifier.citedreferenceShigenobu K, Yang M, Jeong YS, Inokuchi S, Kawabata A, Uchida D. Experiment on fatigue behavior of rib‐to‐deck weld root in orthotropic steel decks. J Constr Steel Res. 2016; 119: 113 ‐ 122.
dc.identifier.citedreferenceWang Y, Wang Z, Zheng Y. Analysis of fatigue crack propagation of an orthotropic bridge deck based on the extended finite element method. Adv Civil Eng. 2019; 1: 1 ‐ 14.
dc.identifier.citedreferenceHuang Y, Zhang Q, Bao Y, Bu YZ. Fatigue assessment of longitudinal rib‐to‐crossbeam welded joints in orthotropic steel bridge decks. J Constr Steel Res. 2019; 159: 53 ‐ 66.
dc.identifier.citedreferenceWei Z, Jin H, Chen GL. Traction structural stress analysis of fatigue behaviors of girth butt weld within welded cast steel joints. Int J Press Ves Pip. 2020; 179: 1 ‐ 22.
dc.identifier.citedreferenceSleczka L. Low cycle fatigue strength assessment of butt and fillet weld connections. J Constr Steel Res. 2004; 60 ( 3‐5 ): 701 ‐ 712.
dc.identifier.citedreferenceFang Z, Ding YL, Wei XC, Li AQ, Geng FF. Fatigue Failure and Optimization of Double‐sided Weld in Orthotropic Steel Bridge Decks. Eng Fail Anal. 2020; 116: 1 ‐ 14.
dc.identifier.citedreferenceKarakas O, Morgenstern C, Sonsino CM. Fatigue design of welded joints from the wrought magnesium alloy AZ31 by the local stress concept with the fictitious notch radii of r f =1.0 and 0.05mm. Int J Fatigue. 2008; 30 ( 12 ): 2210 ‐ 2219.
dc.identifier.citedreferenceKarakas O. Consideration of mean‐stress effects on fatigue life of welded magnesium joints by the application of the Smith–Watson–Topper and reference radius concepts. Int J Fatigue. 2013; 49: 1 ‐ 17.
dc.identifier.citedreferenceKarakas O, Zhang G, Sonsino CM. Critical distance approach for the fatigue strength assessment of magnesium welded joints in contrast to Neuber’s effective stress method. Int J Fatigue. 2018; 112: 21 ‐ 35.
dc.identifier.citedreferenceKarakas O. Application of Neubers effective stress method for the evaluation of the fatigue behaviour of magnesium welds. Int J Fatigue. 2017; 101: 115 ‐ 126.
dc.identifier.citedreferenceTao ZQ, Zhang M, Zhu Y, Cai T, Zhang ZL, Liu H. Multiaxial notch fatigue life prediction based on the dominated loading control mode under variable amplitude loading. Fatigue Fract Eng Mater Struct. 2021; 44 ( 1 ): 225 ‐ 239.
dc.identifier.citedreferenceLuca S. Notches, nominal stresses, fatigue strength reduction factors and constant/variable amplitude multiaxial fatigue loading. Int J Fatigue. 2022; 162: 106941.
dc.identifier.citedreferenceRan Y, Liu JH, Xie LJ. Multiaxial fatigue life prediction method considering notch effect and non‐proportional hardening. Eng Fail Anal. 2022; 136: 106202.
dc.identifier.citedreferenceAygul M, Al‐Emrani M, Urushadze S. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM. Int J Fatigue. 2012; 40: 129 ‐ 142.
dc.identifier.citedreferenceChen Y, Lv P, Li DT. Research on fatigue strength for weld structure details of deck with U‐rib and diaphragm in orthotropic steel bridge deck. Metals. 2019; 5 ( 5 ): 484 ‐ 500.
dc.identifier.citedreferenceChen B, Chen Z, Xie X, Ye XW. Fatigue performance evaluation for an orthotropic steel bridge deck based on field hot‐spot stress measurements. J Test Eval. 2020; 48 ( 2 ): 20180565.
dc.identifier.citedreferenceShen W, Yan R, He F, Wang SM. Multiaxial fatigue analysis of complex welded joints in notch stress approach. Eng Frac Mech. 2018; 204: 344 ‐ 360.
dc.identifier.citedreferencePei X, Ravi SK, Dong P, Li X, Zhou X. A multiaxial vibration fatigue evaluation procedure for welded structures in frequency domain. Mech Syst Signal Process. 2022; 167: 108516.
dc.identifier.citedreferenceWang P, Pei X, Dong P, Song S. Traction structural stress analysis of fatigue behaviors of rib‐to‐deck joints in orthotropic bridge deck. Int J Fatigue. 2019; 125: 11 ‐ 22.
dc.identifier.citedreferencePei X, Dong P, Xing S. A structural strain parameter for a unified treatment of fatigue behaviors of welded components. Int J Fatigue. 2019; 124: 444 ‐ 460.
dc.identifier.citedreferencePei X, Dong P, Kim MH. A simplified structural strain method for low‐cycle fatigue evaluation of girth‐welded pipe components. Int J Fatigue. 2020; 139: 105732.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.