Show simple item record

AAPM task group report 303 endorsed by the ABS: MRI implementation in HDR brachytherapy- Considerations from simulation to treatment

dc.contributor.authorPrisciandaro, Joann
dc.contributor.authorZoberi, Jacqueline (Esthappan)
dc.contributor.authorCohen, Gil’ad
dc.contributor.authorKim, Yusung
dc.contributor.authorJohnson, Perry
dc.contributor.authorPaulson, Eric
dc.contributor.authorSong, William
dc.contributor.authorHwang, Ken-Pin
dc.contributor.authorErickson, Beth
dc.contributor.authorBeriwal, Sushil
dc.contributor.authorKirisits, Christian
dc.contributor.authorMourtada, Firas
dc.date.accessioned2022-09-26T16:05:15Z
dc.date.available2023-09-26 12:05:11en
dc.date.available2022-09-26T16:05:15Z
dc.date.issued2022-08
dc.identifier.citationPrisciandaro, Joann; Zoberi, Jacqueline (Esthappan); Cohen, Gil’ad; Kim, Yusung; Johnson, Perry; Paulson, Eric; Song, William; Hwang, Ken-Pin ; Erickson, Beth; Beriwal, Sushil; Kirisits, Christian; Mourtada, Firas (2022). "AAPM task group report 303 endorsed by the ABS: MRI implementation in HDR brachytherapy- Considerations from simulation to treatment." Medical Physics 49(8): e983-e1023.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/174841
dc.description.abstractThe task group (TG) on magnetic resonance imaging (MRI) implementation in high- dose- rate (HDR) brachytherapy (BT)- Considerations from simulation to treatment, TG 303, was constituted by the American Association of Physicists in Medicine’s (AAPM’s) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on- going quality assurance (QA). Additionally, the TG was charged with describing HDR BT workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT- related TG reports, and new image- guided recommendations beyond CT- based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk- based QA, an example of a risk- based analysis using MRI- based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI- based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society.
dc.publisherCRC Press, Taylor & Francis Group
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHDR
dc.subject.otherMRI
dc.subject.otherprostate cancer
dc.subject.otherbrachytherapy
dc.subject.othergynecological cancer
dc.titleAAPM task group report 303 endorsed by the ABS: MRI implementation in HDR brachytherapy- Considerations from simulation to treatment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174841/1/mp15713.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174841/2/mp15713_am.pdf
dc.identifier.doi10.1002/mp.15713
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceGreenberg TD, Hoff MN, Gilk TB, et al. ACR guidance document on MR safe practices: updates and critical information 2019. J Magn Reson Imaging. 2020; 51 ( 2 ): 331 - 338.
dc.identifier.citedreferencePoder J, Brown R, Howie A. A risk- based approach to development of ultrasound- based high- dose- rate prostate brachytherapy quality management. Brachytherapy. 2018; 17 ( 5 ): 788 - 793.
dc.identifier.citedreferenceTG275. Strategies for effective physics plan and chart review in radaition therapy In progress.
dc.identifier.citedreferenceNuclear Regulatory Commission. Event Notification Reports. https://www.nrc.gov/reading- rm/doc- collections/event- status/event/
dc.identifier.citedreferenceRichardson S. A 2- year review of recent nuclear regulatory commission events: what errors occur in the modern brachytherapy era?. Pract Radiat Oncol. 2012; 2 ( 3 ): 157 - 163.
dc.identifier.citedreferenceThomadsen BR, Erickson BA, Eifel PJ, et al. A review of safety, quality management, and practice guidelines for high- dose- rate brachytherapy: executive summary. Pract Radiat Oncol. 2014; 4 ( 2 ): 65 - 70.
dc.identifier.citedreferenceNesvacil N, Tanderup K, Hellebust TP, et al. A multicentre comparison of the dosimetric impact of inter- and intra- fractional anatomical variations in fractionated cervix cancer brachytherapy. Radiother Oncol. 2013; 107 ( 1 ): 20 - 25.
dc.identifier.citedreferenceMazeron R, Champoudry J, Gilmore J, et al. Intrafractional organs movement in three- dimensional image- guided adaptive pulsed- dose- rate cervical cancer brachytherapy: assessment and dosimetric impact. Brachytherapy. 2015; 14 ( 2 ): 260 - 266.
dc.identifier.citedreferenceMeerschaert R, Nalichowski A, Burmeister J, et al. A comprehensive evaluation of adaptive daily planning for cervical cancer HDR brachytherapy. J Appl Clin Med Phys. 2016; 17 ( 6 ): 323 - 333.
dc.identifier.citedreferenceKandasamy S, Reddy KS, Nagarajan V, et al. Inter- fraction variation in interstitial high- dose- rate brachytherapy. J Radiother Pract. 2015; 14 ( 2 ): 143 - 151.
dc.identifier.citedreferenceHaack S, Kallehauge JF, Jespersen SN, et al. Correction of diffusion- weighted magnetic resonance imaging for brachytherapy of locally advanced cervical cancer. Acta Oncol. 2014; 53 ( 8 ): 1073 - 1078.
dc.identifier.citedreferenceWood R, Bassett K, Foerster V, Spry C, Tong L, 1.5 Tesla Magnetic Resonance Imaging Scanners Compared with 3.0 Tesla Magnetic Resonance Imaging Scanners: Systematic Review of Clinical Effectiveness: Pilot Project Ottawa. Available from: https://www.ncbi.nlm.nih.gov/books/NBK174467/pdf/Bookshelf_NBK174467.pdf
dc.identifier.citedreferenceAmerican College of Radiology. Safety Screening Form for MR Procedures. https://www.acr.org/Clinical- Resources/Radiology- Safety/MR- Safety Accessed May 18, 2022, 2022.
dc.identifier.citedreferenceShellock FG, Magnetic Resonance (MR) procedure screening form for patients. http://www.mrisafety.com/images/PreScrnF.pdf Accessed March 18, 2022, 2022.
dc.identifier.citedreferenceGlide- Hurst C, Paulson E, McGee K, et al. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance. Med Phys. 2021; 48 ( 7 ): e636 - 670.
dc.identifier.citedreferenceSong WY, Tanderup K, Pieters BR. Section III: Brachytherapy Suites. Emerging technologies in Brachytherapy. CRC Press: Taylor & Francis Group; 2017.
dc.identifier.citedreferenceBeld E, Seevinck PR, Schuurman J, et al. Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging- guided high- dose- rate (HDR) brachytherapy. Int J Radiat Oncol Biol Phys. 2018; 102 ( 4 ): 960 - 968.
dc.identifier.citedreferenceMutic S, Dempsey JF. The ViewRay system: magnetic resonance- guided and controlled radiotherapy. Semin Radiat Oncol. 2014; 24 ( 3 ): 196 - 199.
dc.identifier.citedreferenceNCT00913939. MRI- Guided HDR Brachytherapy for Prostate Cancer. 2009; https://clinicaltrials.gov/ct2/show/NCT00913939 Accessed December 1, 2019
dc.identifier.citedreferenceNCT02342054. Prospective Phase II Trial of Single Fraction Real- time High- Dose- Rate Brachytherapy in Patients With Low and Intermediate Risk Prostate Cancer. 2014; https://www.clinicaltrials.gov/ct2/show/NCT02342054 Accessed December 1, 2019
dc.identifier.citedreferenceNCT03424694. HDR Brachytherapy Used as Monotherapy for Low and Intermediate Risk Prostate Cancer: a Phase II Randomized Trial. 2015; https://clinicaltrials.gov/ct2/show/NCT03424694 Accessed December 1, 2019
dc.identifier.citedreferenceNCT02623933. MRI Assisted Focal Boost Integrated With HDR Monotherapy Study in Low and Intermediate Risk Prostate Cancer Patients (MARS). 2015; https://clinicaltrials.gov/ct2/show/NCT02623933 Accessed December 1, 2019
dc.identifier.citedreferenceNCT04523896. HDR Brachytherapy combined with Stereotactic Ablative Prostate Radiotherapy for Patients With Intermediate and High- risk Prostate Cancer: Phase II clinical trial. 2020; https://clinicaltrials.gov/ct2/show/NCT04523896 Accessed March 29, 2022
dc.identifier.citedreferenceNCT01583920. Pilot study of focal salvage HDR prostate brachytherapy; 2020. https://clinicaltrials.gov/ct2/show/NCT01583920 Accessed March 29, 2022
dc.identifier.citedreferenceGEC- ESTRO. Image guided intensity modulated External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer (EMBRACE- II). Available from: https://www.embracestudy.dk/
dc.identifier.citedreferenceNRG Oncology. NRG- GY006: A Randomized Phase II Trial of Radiation Therapy and Cisplatin Alone or in Combination with Intravenous Triapine in Women with Newly Diagnosed Bulky Stage IB2, Stage II, IIIB, or IVA Cancer of the Uterine Cervix or Stage II- IVA Vaginal Cancer https://www.nrgoncology.org/Clinical- Trials/Protocol- Table
dc.identifier.citedreferenceNRG Oncology. NRG- GY017: Anti PD- L1 (Atezolizumab) as an Immune Primer and Concurrently with Extended Field Chemoradiotherapy for Node Positive Locally Advanced Cervical Cancer https://www.nrgoncology.org/Clinical- Trials/Protocol- Table
dc.identifier.citedreferenceclinicaltrials.gov. Optimizing Brachytherapy Application and Delivery With MRI Guidance for Gynecologic Cancer. https://www.clinicaltrials.gov/ct2/show/NCT03277469?term=brachytherapy%2C+MRI&cond=Gynecologic+Cancer&draw=2&rank=1 Accessed March 31, 2022
dc.identifier.citedreferencePrisciandaro J, Hadley S, Jolly S, et al. Development of a brachytherapy audit checklist tool. Brachytherapy. 2015; 14 ( 6 ): 963 - 969.
dc.identifier.citedreferenceMRISafety.com. Screening Form. http://www.mrisafety.com/ScreeningForm.html Accessed January 13, 2020
dc.identifier.citedreferenceLin P- JP, Beck TJ, Borras C, et al. AAPM Report No. 39: Specification and Acceptance Testing of Computed Tomography Scanners. https://www.aapm.org/pubs/reports/detail.asp?docid=38
dc.identifier.citedreferenceKlein EE, Hanley J, Bayouth J, et al. Task Group 142 report: quality assurance of medical acceleratorsa). Med Phys. 2009; 36 ( 9Part1 ): 4197 - 4212.
dc.identifier.citedreferenceBissonnette J- P, Balter PA, Dong L, et al. Quality assurance for image- guided radiation therapy utilizing CT- based technologies: a report of the AAPM TG- 179. Med Phys. 2012; 39 ( 4 ): 1946 - 1963.
dc.identifier.citedreferenceViswanathan AN, Beriwal S, De Los Santos J, et al. The American brachytherapy society treatment recommendations for locally advanced carcinoma of the cervix part II: high dose- rate brachytherapy. Brachytherapy. 2012; 11 ( 1 ): 47 - 52.
dc.identifier.citedreferencePugh TJ, Pokharel SS. Magnetic resonance imaging in prostate brachytherapy: evidence, clinical end points to data, and direction forward. Brachytherapy. 2017; 16 ( 4 ): 659 - 664.
dc.identifier.citedreferenceDirix P, Haustermans K, Vandecaveye V. The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol. 2014; 24 ( 3 ): 151 - 159.
dc.identifier.citedreferenceTanderup K, Viswanathan AN, Kirisits C, et al. Magnetic resonance image guided brachytherapy. Semin Radiat Oncol. 2014; 24 ( 3 ): 181 - 191.
dc.identifier.citedreferenceGay S, Chen N, Burch J, et al. Multiplanar reconstruction in magnetic resonance evaluation of the knee: comparison with film magnetic resonance interpretation. Invest Radiol. 1993; 28 ( 2 ): 142 - 145.
dc.identifier.citedreferenceBruno F, Arrigoni F, Mariani S, et al. Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications. Radiol Med (Torino). 2019; 124 ( 4 ): 243 - 252.
dc.identifier.citedreferenceSchabelman E, Witting M. The relationship of radiocontrast, iodine, and seafood allergies: a medical myth exposed. J Emerg Med. 2010; 39 ( 5 ): 701 - 707.
dc.identifier.citedreferenceSicherer SH. Risk of severe allergic reactions from the use of potassium iodide for radiation emergencies. J Allergy Clin Immunol. 2004; 114 ( 6 ): 1395 - 1397.
dc.identifier.citedreferenceVenkatesan AM, Stafford RJ, Duran C, et al. Prostate magnetic resonance imaging for brachytherapists: anatomy and technique. Brachytherapy. 2017; 16 ( 4 ): 679 - 687.
dc.identifier.citedreferenceBlanchard P, Pugh TJ, Mahmood U, et al. MRI simulation for LDR prostate brachytherapy: can we replace ultrasound with MRI for treatment planning? Comparison of pre- planning, day 0, and day 30 MR dosimetry. Brachytherapy. 2016; 15 ( 3 ): S57.
dc.identifier.citedreferencePotter R, Haie- Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image- based treatment planning in cervix cancer brachytherapy- 3D dose volume parameters and aspects of 3D image- based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006; 78 ( 1 ): 67 - 77.
dc.identifier.citedreferenceDimopoulos JC, Petrow P, Tanderup K, et al. Recommendations from Gynaecological (GYN) GEC- ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012; 103 ( 1 ): 113 - 122.
dc.identifier.citedreferenceHaie- Meder C, Potter R, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC- ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005; 74 ( 3 ): 235 - 245.
dc.identifier.citedreferenceHellebust TP, Kirisits C, Berger D, et al. Recommendations from gynaecological (GYN) GEC- ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image- based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010; 96 ( 2 ): 153 - 160.
dc.identifier.citedreferenceICRU Report No. 89. Prescribing, recording, and reporting brachytherapy for cancer of the cervix. J ICRU. 2013; 13 ( 1 ).
dc.identifier.citedreferenceCurran WJ, DiSaia PJ, Wolmark N. NRG oncology research opportunities within the new national clinical trials network. Semin Oncol. 2014; 41 ( 5 ): 553 - 555.
dc.identifier.citedreferenceGrover S, Harkenrider MM, Cho LP, et al. Image guided cervical brachytherapy: 2014 survey of the American brachytherapy society. Int J Radiat Oncol Biol Phys. 2016; 94 ( 3 ): 598 - 604.
dc.identifier.citedreferenceWang J, Tanderup K, Cunha A, et al. Magnetic resonance imaging basics for the prostate brachytherapist. Brachytherapy. 2017; 16 ( 4 ): 715 - 727.
dc.identifier.citedreferenceBlanchard P, Menard C, Frank SJ. Clinical use of magnetic resonance imaging across the prostate brachytherapy workflow. Brachytherapy. 2017; 16: 734 - 742.
dc.identifier.citedreferenceBuus S, Rylander S, Hokland S, et al. Learning curve of MRI- based planning for high- dose- rate brachytherapy for prostate cancer. Brachytherapy. 2016; 15 ( 4 ): 426 - 434.
dc.identifier.citedreferenceHoskin PJ, Rojas AM, Ostler PJ, et al. Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy. Radiother Oncol. 2013; 110 ( 1 ): 110 - 113.
dc.identifier.citedreferenceDamato AL, Viswanathan AN. Magnetic resonance- guided gynecologic brachytherapy. Magn Reson Imaging Clin N Am. 2015; 23 ( 4 ): 633 - 642.
dc.identifier.citedreferenceViswanathan AN, Cormack R, Holloway CL, et al. Magnetic resonance- guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys. 2006; 66 ( 1 ): 91 - 99.
dc.identifier.citedreferenceViswanathan AN, Szymonifka J, Tempany- Afdhal CM, et al. A prospective trial of real- time magnetic resonance- guided catheter placement in interstitial gynecologic brachytherapy. Brachytherapy. 2013; 12 ( 3 ): 240 - 247.
dc.identifier.citedreferenceEnders J, Rief M, Zimmermann E, et al. High- field open versus short- bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality. PLoS One. 2013; 8 ( 12 ): e83427.
dc.identifier.citedreferenceBeriwal S, Kannan N, Kim H, et al. Three- dimensional high dose rate intracavitary image- guided brachytherapy for the treatment of cervical cancer using a hybrid magnetic resonance imaging/computed tomography approach: feasibility and early results. Clin Oncol. 2011; 23 ( 10 ): 685 - 690.
dc.identifier.citedreferenceWood R, Bassett K, Foerster V, Spry C, Tong L, 1.5 Tesla Magnetic Resonance Imaging Scanners Compared with 3.0 Tesla Magnetic Resonance Imaging Scanners: Systematic Review of Clinical Effectiveness. Available from: https://www.ncbi.nlm.nih.gov/books/NBK174456/
dc.identifier.citedreferenceKo HC, Huang JY, Miller JR, et al. Novel use of ViewRay MRI guidance for high- dose- rate brachytherapy in the treatment of cervical cancer. Brachytherapy. 2018; 17 ( 4 ): 680 - 688.
dc.identifier.citedreferenceKirisits C, Lang S, Dimopoulos J, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006; 65 ( 2 ): 624 - 630.
dc.identifier.citedreferenceNomden CN, de Leeuw AAC, Moerland MA, et al. Clinical use of the utrecht applicator for combined intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2012; 82 ( 4 ): 1424 - 1430.
dc.identifier.citedreferenceWalter F, Maihofer C, Schuttrumpf L, et al. Combined intracavitary and interstitial brachytherapy of cervical cancer using the novel hybrid applicator Venezia: clinical feasibility and initial results. Brachytherapy. 2018.
dc.identifier.citedreferenceSchwarz JK, Beriwal S, Esthappan J, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015; 14 ( 5 ): 587 - 599.
dc.identifier.citedreferenceOwrangi AM, Jolly S, Balter JM, et al. Clinical implementation of MR- guided vaginal cylinder brachytherapy. J Appl Clin Med Phys. 2015; 16 ( 6 ): 490 - 500.
dc.identifier.citedreferenceChapman CH, Prisciandaro JI, Maturen KE, et al. MRI- based evaluation of the vaginal cuff in brachytherapy planning: are we missing the target?. Int J Radiat Oncol Biol Phys. 2016; 95 ( 2 ): 743 - 750.
dc.identifier.citedreferenceLindegaard JC, Madsen ML, Traberg A, et al. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer. Radiother Oncol. 2016; 118 ( 1 ): 173 - 175.
dc.identifier.citedreferencePerez- Calatayud J, Kuipers F, Ballester F, et al. Exclusive MRI- based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiother Oncol. 2009; 91 ( 2 ): 181 - 186.
dc.identifier.citedreferenceSoliman AS, Owrangi A, Ravi A, et al. Metal artifacts in MRI- guided brachytherapy of cervical cancer. J Contemp Brachytherapy. 2016; 8 ( 4 ): 363 - 369.
dc.identifier.citedreferenceMenard C, Susil RC, Choyke P, et al. MRI- guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys. 2004; 59 ( 5 ): 1414 - 1423.
dc.identifier.citedreferenceChassagne D, Dutreix A, Almond P, et al. Dose and volume specification for reporting intracavitary therapy in gynecology. J Int Comm Radiat Units Meas. 1985; ICRU 38: 1 - 23.
dc.identifier.citedreferenceViswanathan AN, Thomadsen B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012; 11: 33 - 46.
dc.identifier.citedreferencePotter R, Georg P, Dimopoulos JC, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011; 100 ( 1 ): 116 - 123.
dc.identifier.citedreferenceLindegaard JC, Fokdal LU, Nielsen SK, et al. MRI- guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013; 52 ( 7 ): 1510 - 1519.
dc.identifier.citedreferenceMahantshetty U, Krishnatry R, Hande V, et al. Magnetic resonance image guided adaptive brachytherapy in locally advanced cervical cancer: an experience from a tertiary cancer center in a low and middle income countries setting. Int J Radiat Oncol Biol Phys. 2017; 99 ( 3 ): 608 - 617.
dc.identifier.citedreferencePötter R, Tanderup K, Kirisits C, et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC- ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018; 9: 48 - 60.
dc.identifier.citedreferenceFokdal L, Sturdza A, Mazeron R, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016; 120 ( 3 ): 434 - 440.
dc.identifier.citedreferenceMazeron R, Fokdal LU, Kirchheiner K, et al. Dose- volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI- guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016; 120 ( 3 ): 412 - 419.
dc.identifier.citedreferencePötter R, Tanderup K, Schmid MP, et al. MRI- guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE- I): a multicentre prospective cohort study. Lancet Oncol. 2021; 22 ( 4 ): 538 - 547.
dc.identifier.citedreferenceGlasgow GP, Bourland DJ, Grigsby PW, et al. Remote Afterloading Technology. College Park, MD
dc.identifier.citedreferenceNath R, Anderson LL, Meli JA, et al, American Association of Physicists in Medicine. Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. Med Phys. 1997; 24 ( 10 ): 1557 - 1598.
dc.identifier.citedreferenceKubo HD, Glasgow GP, Pethel TD, et al. High dose- rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998; 25 ( 4 ): 375 - 403.
dc.identifier.citedreferenceKutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys. 1994; 21 ( 4 ): 581 - 618.
dc.identifier.citedreferenceFraass B, Doppke K, Hunt M, et al. American association of physicists in medicine radiation therapy committee task group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998; 25 ( 10 ): 1773 - 1829.
dc.identifier.citedreferenceJackson EF, Bronskill MJ, Drost DJ, et al. Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities: Report of MR Subcommittee Task Group I. 2010. https://www.aapm.org/pubs/reports/RPT_100.pdf
dc.identifier.citedreferenceYanasak N, Clarke G, Stafford RJ, et al. Parallel Imaging in MRI: Technology, Applications, and Quality Control: The Report of AAPM Task Group 118. College Park, MD
dc.identifier.citedreferenceBrock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys. 2017; 44 ( 7 ): e43 - e76.
dc.identifier.citedreferenceHaack S, Nielsen SK, Lindegaard JC, et al. Applicator reconstruction in MRI 3D image- based dose planning of brachytherapy for cervical cancer. Radiother Oncol. 2009; 91 ( 2 ): 187 - 193.
dc.identifier.citedreferenceKim Y, Muruganandham M, Modrick JM, et al. Evaluation of artifacts and distortions of titanium applicators on 3.0- Tesla MRI: feasibility of titanium applicators in MRI- guided brachytherapy for gynecological cancer. Int J Radiat Oncol Biol Phys. 2011; 80 ( 3 ): 947 - 955.
dc.identifier.citedreferenceMiquel ME, Blackall JM, Uribe S, et al. Patient- specific respiratory models using dynamic 3D MRI: preliminary volunteer results. Phys Med. 2013; 29 ( 2 ): 214 - 220.
dc.identifier.citedreferenceHarry VN, Semple SI, Gilbert FJ, et al. Diffusion- weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol. 2008; 111 ( 2 ): 213 - 220.
dc.identifier.citedreferenceOlsen JR, Esthappan J, DeWees T, et al. Tumor volume and subvolume concordance between FDG- PET/CT and diffusion- weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging. 2013; 37 ( 2 ): 431 - 434.
dc.identifier.citedreferenceHan K, Croke J, Foltz W, et al. A prospective study of DWI, DCE- MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer. Radiother Oncol. 2016; 120 ( 3 ): 519 - 525.
dc.identifier.citedreferencePodder TK, Beaulieu L, Caldwell B, et al. AAPM and GEC- ESTRO guidelines for image- guided robotic brachytherapy: report of Task Group 192. Med Phys. 2014; 41 ( 10 ): 101501.
dc.identifier.citedreferenceSun W, Bhatia SK, Jacobson GM, et al. Target volume changes through high- dose- rate brachytherapy for cervical cancer when evaluated on high resolution (3.0 Tesla) magnetic resonance imaging. Pract Radiat Oncol. 2012; 2 ( 4 ): e101 - e106.
dc.identifier.citedreferenceRao YJ, Zoberi JE, Kadbi M, et al. Metal artifact reduction in MRI- based cervical cancer intracavitary brachytherapy. Phys Med Biol. 2017; 62: 3011 - 3024.
dc.identifier.citedreferenceTrifiletti DM, Libby B, Feuerlein S, et al. Implementing MRI- based target delineation for cervical cancer treatment within a rapid workflow environment for image- guided brachytherapy: a practical approach for centers without in- room MRI. Brachytherapy. 2015; 14 ( 6 ): 905 - 909.
dc.identifier.citedreferencePötter R, Federico M, Sturdza A, et al. Value of magnetic resonance imaging without or with applicator in place for target definition in cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2016; 94 ( 3 ): 588 - 597.
dc.identifier.citedreferenceMaenhout M, Peters M, van Vulpen M, et al. Focal MRI- guided salvage high- dose- rate brachytherapy in patients with radiorecurrent prostate cancer. Technol Cancer Res Treat. 2017; 16 ( 6 ): 1194 - 1201.
dc.identifier.citedreferenceDavidson MT, Yuen J, D’Souza DP, et al. Optimization of high- dose- rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy. 2008; 7 ( 3 ): 248 - 253.
dc.identifier.citedreferenceGEC- ESTRO. A European study on MRI- guided brachytherapy in locally advanced cervical cancer (EMBRACE). Available from: https://www.embracestudy.dk/
dc.identifier.citedreferenceNesvacil N, Potter R, Sturdza A, et al. Adaptive image guided brachytherapy for cervical cancer: a combined MRI- /CT- planning technique with MRI only at first fraction. Radiother Oncol. 2013; 107 ( 1 ): 75 - 81.
dc.identifier.citedreferenceHarkenrider MM, Shea SM, Wood AM, et al. How one institution overcame the challenges to start an MRI- based brachytherapy program for cervical cancer. J Contemp Brachytherapy. 2017; 9 ( 2 ): 177 - 186.
dc.identifier.citedreferenceD’Amico AV, Tempany CM, Schultz D, et al. Comparing PSA outcome after radical prostatectomy or magnetic resonance imaging- guided partial prostatic irradiation in select patients with clinically localized adenocarcinoma of the prostate. Urology. 2003; 62 ( 6 ): 1063 - 1067.
dc.identifier.citedreferenceMenard C, Pambrun JF, Kadoury S. The utilization of magnetic resonance imaging in the operating room. Brachytherapy. 2017; 16 ( 4 ): 754 - 760.
dc.identifier.citedreferenceMurgic J, Chung P, Berlin A, et al. Lessons learned using an MRI- only workflow during high- dose- rate brachytherapy for prostate cancer. Brachytherapy. 2016; 15 ( 2 ): 147 - 155.
dc.identifier.citedreferenceKirisits C, Schmid MP, Nesvacil N. Chapter 19: medical University of Vienna, Vienna, Austria. In: Song WY, Tanderup K, Pieters BR, eds. Emerging Technologies in Brachytherapy. CRC Press, Taylor & Francis Group; 2017.
dc.identifier.citedreferenceKapur T, Egger J, Damato A, et al. 3- T MR- guided brachytherapy for gynecologic malignancies. Magn Reson Imaging. 2012; 30 ( 9 ): 1279 - 1290.
dc.identifier.citedreferenceAnderson R, Armour E, Beeckler C, et al. Interventional radiation oncology (IRO): transition of a magnetic resonance simulator to a brachytherapy suite. Brachytherapy. 2018; 17 ( 3 ): 587 - 596.
dc.identifier.citedreferenceBusse RF, Hariharan H, Vu A, et al. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med. 2006; 55 ( 5 ): 1030 - 1037.
dc.identifier.citedreferencePotter R, Kirisits C, Fidarova E, et al. Present status and future of high- precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol. 2008; 47: 1325 - 1336.
dc.identifier.citedreferenceLiney GP, Moerland MA. Magnetic resonance imaging acquisition techniques for radiotherapy planning. Semin Radiat Oncol. 2014; 24 ( 3 ): 160 - 168.
dc.identifier.citedreferenceBernstein M, King K, Zhou X. Handbook of MRI Pulse Sequences. 1st ed. Elsevier Academic Press; 2004.
dc.identifier.citedreferenceMa J, Moerland MA, Venkatesan AM, et al. Pulse sequence considerations for simulation and postimplant dosimetry of prostate brachytherapy. Brachytherapy. 2017; 16 ( 4 ): 743 - 753.
dc.identifier.citedreferencePaulson ES, Erickson B, Schultz C, et al. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015; 42 ( 1 ): 28 - 39.
dc.identifier.citedreferenceJan JWL, Bas WR, Van den Berg CAT, et al. MR guidance in radiotherapy. Phys Med Biol. 2014; 59 ( 21 ): R349.
dc.identifier.citedreferenceKrupa K, Bekiesinska- Figatowska M. Artifacts in magnetic resonance imaging. Pol J Radiol. 2015; 80: 93 - 106.
dc.identifier.citedreferenceMitchell MD, Kundel HL, Axel L, et al. Agarose as a tissue equivalent phantom material for NMR imaging. Magn Reson Imaging. 1986; 4 ( 3 ): 263 - 266.
dc.identifier.citedreferenceSchindel J, Muruganandham M, Pigge FC, et al. Magnetic resonance imaging (MRI) markers for MRI- guided high- dose- rate brachytherapy: novel marker- flange for cervical cancer and marker catheters for prostate cancer. Int J Radiat Oncol Biol Phys. 2013; 86 ( 2 ): 387 - 393.
dc.identifier.citedreferenceRamani S, Schulte R, Mckinnon G, Ashe J, Pilitsis J, Hancu I. Accurate localization of individual DBS contacts by MRI using zero- TE phase images. Proc. Intl. Soc. Mag. Reson. Med. 2018; 26: 2687.
dc.identifier.citedreferenceFrank SJ, Stafford RJ, Bankson JA, et al. A novel MRI marker for prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2008; 71 ( 1 ): 5 - 8.
dc.identifier.citedreferenceMerkle EM, Dale BM. Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol. 2006; 186: 1524 - 1532.
dc.identifier.citedreferenceHu Y, Esthappan J, Mutic S, et al. Improve definition of titanium tandems in MR- guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI. Radiat Oncol. 2013; 8 ( 1 ): 16.
dc.identifier.citedreferenceZoberi JE, Garcia- Ramirez J, Hu Y, et al. Clinical implementation of multisequence MRI- based adaptive intracavitary brachytherapy for cervix cancer. J Appl Clin Med Phys. 2016; 17 ( 1 ): 121 - 131.
dc.identifier.citedreferenceSchindel J, Zhang W, Bhatia SK, et al. Dosimetric impacts of applicator displacements and applicator reconstruction- uncertainties on 3D image- guided brachytherapy for cervical cancer. J Contemp Brachytherapy. 2013; 5: 250 - 257.
dc.identifier.citedreferenceTanderup K, Hellebust TP, Lang S, et al. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother Oncol. 2008; 89 ( 2 ): 156 - 163.
dc.identifier.citedreferenceDe Leeuw AAC, Moerland MA, Nomden C, et al. Applicator reconstruction and applicator shifts in 3D MR- based PDR brachytherapy of cervical cancer. Radiother Oncol. 2009; 93 ( 2 ): 341 - 346.
dc.identifier.citedreferenceTanderup K, Nesvacil N, Potter R, et al. Uncertainties in image guided adaptive cervix cancer brachytherapy: impact on planning and prescription. Radiother Oncol. 2013; 107 ( 1 ): 1 - 5.
dc.identifier.citedreferenceDeufel CL, Tian S, Yan BB, et al. Automated applicator digitization for high- dose- rate cervix brachytherapy using image thresholding and density- based clustering. Brachytherapy. 2020; 19 ( 1 ): 111 - 118.
dc.identifier.citedreferenceKim Y, Hsu IC, Lessard E, et al. Dose uncertainty due to computed tomography (CT) slice thickness in CT- based high dose rate brachytherapy of the prostate cancer. Med Phys. 2004; 31: 2543 - 2548.
dc.identifier.citedreferenceWalker A, Metcalfe P, Liney G, et al. MRI geometric distortion: impact on tangential whole- breast IMRT. J Appl Clin Med Phys. 2016; 17 ( 5 ): 7 - 19.
dc.identifier.citedreferenceAdjeiwaah M, Bylund M, Lundman JA, et al. Quantifying the effect of 3T magnetic resonance imaging residual system distortions and patient- induced susceptibility distortions on radiation therapy treatment planning for prostate cancer. Int J Radiat Oncol Biol Phys. 2018; 100 ( 2 ): 317 - 324.
dc.identifier.citedreferencePappas EP, Alshanqity M, Moutsatsos A, et al. MRI- related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact. Technol Cancer Res Treat. 2017; 16 ( 6 ): 1120 - 1129.
dc.identifier.citedreferenceBrunt JNH. Computed tomography- magnetic resonance image registration in radiotherapy treatment planning. Clin Oncol. 2010; 22 ( 8 ): 688 - 697.
dc.identifier.citedreferenceTan LT, Tanderup K, Kirisits C, et al. Image- guided adaptive radiotherapy in cervical cancer. Semin Radiat Oncol. 2019; 29 ( 3 ): 284 - 298.
dc.identifier.citedreferenceKim Y, Kim Y, Todor D, et al. Recommendations on 3D image- based treatment planning, dosimetry and quality management for HDR intracavitary brachytherapy: Report of AAPM Task Group No. 236; Part II: Intracavitary Gynecological Brachytherapy. In progress.
dc.identifier.citedreferencePetric P, Hudej R, Rogelj P, et al. Comparison of 3D MRI with high sampling efficiency and 2D multiplanar MRI for contouring in cervix cancer brachytherapy. Radiol Oncol. 2012; 46 ( 3 ): 242 - 251.
dc.identifier.citedreferenceEsthappan J, Ma DJ, Narra VR, et al. Comparison of apparent diffusion coefficient maps to T2- weighted images for target delineation in cervix cancer brachytherapy. J Contemp Brachytherapy. 2011; 3 ( 4 ): 193 - 198.
dc.identifier.citedreferenceHaack S, Pedersen EM, Jespersen SN, et al. Apparent diffusion coefficients in GEC ESTRO target volumes for image guided adaptive brachytherapy of locally advanced cervical cancer. Acta Oncol. 2010; 49 ( 7 ): 978 - 983.
dc.identifier.citedreferenceSchakel T, Hoogduin JM, Terhaard CHJ, et al. Technical note: diffusion- weighted MRI with minimal distortion in head- and- neck radiotherapy using a turbo spin echo acquisition method. Med Phys. 2017; 44 ( 8 ): 4188 - 4193.
dc.identifier.citedreferenceDyk P, Jiang N, Sun B, et al. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion- weighted imaging- guided high- dose- rate and positron emission tomography/computed tomography- guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2014; 90 ( 4 ): 794 - 801.
dc.identifier.citedreferenceTanderup K, Fokdal LU, Sturdza A, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016; 120 ( 3 ): 441 - 446.
dc.identifier.citedreferenceTanderup K, Pötter R, Lindegaard J, et al. Image guided intensity modulated External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer - EMBRACE- II. Available from: https://www.embracestudy.dk/
dc.identifier.citedreferenceSwanick CW, Castle KO, Rechner LA, et al. Optimizing packing contrast for MRI- based intracavitary brachytherapy planning for cervical cancer. Brachytherapy. 2015; 14 ( 3 ): 385 - 389.
dc.identifier.citedreferenceCitrin D, Ning H, Guion P, et al. Inverse treatment planning based on MRI for HDR prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2005; 61 ( 4 ): 1267 - 1275.
dc.identifier.citedreferenceYamada Y, Rogers L, Demanes DJ, et al. American Brachytherapy Society consensus guidelines for high- dose- rate prostate brachytherapy. Brachytherapy. 2012; 11 ( 1 ): 20 - 32.
dc.identifier.citedreferenceDebois M, Oyen R, Maes F, et al. The contribution of magnetic resonance imaging to the three- dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys. 1999; 45 ( 4 ): 857 - 865.
dc.identifier.citedreferenceRasch C, Barillot I, Remeijer P, et al. Definition of the prostate in CT and MRI: a multi- observer study. Int J Radiat Oncol Biol Phys. 1999; 43 ( 1 ): 57 - 66.
dc.identifier.citedreferenceSmith WL, Lewis C, Bauman G, et al. Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys. 2007; 67 ( 4 ): 1238 - 1247.
dc.identifier.citedreferenceChristie DRH, Sharpley CF. How accurately can prostate gland imaging measure the prostate gland volume? Results of a systematic review. Prostate Cancer. 2019; 2019: 6932572.
dc.identifier.citedreferenceDemanes DJ, Martinez AA, Ghilezan M, et al. High- dose- rate monotherapy: safe and effective brachytherapy for patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2011; 81 ( 5 ): 1286 - 1292.
dc.identifier.citedreferenceZamboglou N, Tselis N, Baltas D, et al. High- dose- rate interstitial brachytherapy as monotherapy for clinically localized prostate cancer: treatment evolution and mature results. Int J Radiat Oncol Biol Phys. 2013; 85 ( 3 ): 672 - 678.
dc.identifier.citedreferenceDemanes DJ, Ghilezan MI. High- dose- rate brachytherapy as monotherapy for prostate cancer. Brachytherapy. 2014; 13 ( 6 ): 529 - 541.
dc.identifier.citedreferenceTisseverasinghe SA, Crook JM. The role of salvage brachytherapy for local relapse after external beam radiotherapy for prostate cancer. Transl Androl Urol. 2018; 7 ( 3 ): 414 - 435.
dc.identifier.citedreferenceMurgic J, Morton G, Loblaw A, et al. Focal salvage high dose- rate brachytherapy for locally recurrent prostate cancer after primary radiation therapy failure: results from a prospective clinical trial. Int J Radiat Oncol Biol Phys. 2018; 102 ( 3 ): 561 - 567.
dc.identifier.citedreferenceTharmalingam H, Hamada M, Tsang YM, et al. Salvage high- dose rate (HDR) brachytherapy as a treatment for locally recurrent prostate cancer after primary radiation therapy. Int J Radiat Oncol Biol Phys. 2018; 102 ( 3 ): e118 - e119.
dc.identifier.citedreferenceCrook J, Ots A, Gaztanaga M, et al. Ultrasound- planned high- dose- rate prostate brachytherapy: dose painting to the dominant intraprostatic lesion. Brachytherapy. 2014; 13 ( 5 ): 433 - 441.
dc.identifier.citedreferenceStrom TJ, Wilder RB, Fernandez DC, et al. A dosimetric study of polyethylene glycol hydrogel in 200 prostate cancer patients treated with high- dose rate brachytherapy±intensity modulated radiation therapy. Radiother Oncol. 2014; 111 ( 1 ): 126 - 131.
dc.identifier.citedreferenceYeh J, Lehrich B, Tran C, et al. Polyethylene glycol hydrogel rectal spacer implantation in patients with prostate cancer undergoing combination high- dose- rate brachytherapy and external beam radiotherapy. Brachytherapy. 2016; 15 ( 3 ): 283 - 287.
dc.identifier.citedreferenceSheridan AD, Nath SK, Huber S, et al. Role of MRI in the use of an absorbable hydrogel spacer in men undergoing radiation therapy for prostate cancer: what the radiologist needs to know. Am J Roentgenol. 2017; 209 ( 4 ): 797 - 799.
dc.identifier.citedreferenceGomez- Iturriaga A, Casquero F, Urresola A, et al. Dose escalation to dominant intraprostatic lesions with MRI- transrectal ultrasound fusion high- dose- rate prostate brachytherapy. Prospective phase II trial. Radiother Oncol. 2016; 119 ( 1 ): 91 - 96.
dc.identifier.citedreferenceDe Brabandere M, Hoskin P, Haustermans K, et al. Prostate post- implant dosimetry: interobserver variability in seed localisation, contouring and fusion. Radiother Oncol. 2012; 104 ( 2 ): 192 - 198.
dc.identifier.citedreferenceFrank SJ, Mourtada F, Crook J, et al. Use of magnetic resonance imaging in low- dose- rate and high- dose- rate prostate brachytherapy from diagnosis to treatment assessment: defining the knowledge gaps, technical challenges, and barriers to implementation. Brachytherapy. 2017; 16 ( 4 ): 672 - 678.
dc.identifier.citedreferenceBarentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012; 22 ( 4 ): 746 - 757.
dc.identifier.citedreferencePugh TJ, Frank SJ, Achim M, et al. Endorectal magnetic resonance imaging for predicting pathologic T3 disease in Gleason score 7 prostate cancer: implications for prostate brachytherapy. Brachytherapy. 2013; 12 ( 3 ): 204 - 209.
dc.identifier.citedreferenceAlbert JM, Swanson DA, Pugh TJ, et al. Magnetic resonance imaging- based treatment planning for prostate brachytherapy. Brachytherapy. 2013; 12 ( 1 ): 30 - 37.
dc.identifier.citedreferenceHaider MA, Chung P, Sweet J, et al. Dynamic contrast- enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008; 70 ( 2 ): 425 - 430.
dc.identifier.citedreferenceBauman G, Haider M, Van der Heide UA, et al. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol. 2013; 107 ( 3 ): 274 - 281.
dc.identifier.citedreferenceGroenendaal G, Borren A, Moman MR, et al. Pathologic validation of a model based on diffusion- weighted imaging and dynamic contrast- enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys. 2012; 82 ( 3 ): e537 - 544.
dc.identifier.citedreferenceMenard C, Iupati D, Publicover J, et al. MR- guided prostate biopsy for planning of focal salvage after radiation therapy. Radiology. 2015; 274 ( 1 ): 181 - 191.
dc.identifier.citedreferenceBeaulieu L, Carlsson Tedgren A, Carrier JF, et al. Report of the Task Group 186 on model- based dose calculation methods in brachytherapy beyond the TG- 43 formalism: current status and recommendations for clinical implementation. Med Phys. 2012; 39 ( 10 ): 6208 - 6236.
dc.identifier.citedreferenceLambert J, Greer PB, Menk F, et al. MRI- guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI- based dose planning. Radiother Oncol. 2011; 98 ( 3 ): 330 - 334.
dc.identifier.citedreferenceMikell JK, Klopp AH, Gonzalez GM, et al. Impact of heterogeneity- based dose calculation using a deterministic grid- based Boltzmann equation solver for intracavitary brachytherapy. Int J Radiat Oncol Biol Phys. 2012; 83 ( 3 ): e417 - 422.
dc.identifier.citedreferenceRivard MJ, Venselaar JL, Beaulieu L. The evolution of brachytherapy treatment planning. Med Phys. 2009; 36 ( 6 ): 2136 - 2153.
dc.identifier.citedreferenceJacob D, Lamberto M, DeSouza Lawrence L, et al. Clinical transition to model- based dose calculation algorithm: a retrospective analysis of high- dose- rate tandem and ring brachytherapy of the cervix. Brachytherapy. 2017; 16 ( 3 ): 624 - 629.
dc.identifier.citedreferencePrice MJ, Jackson EF, Gifford KA, et al. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging. Med Phys. 2009; 36 ( 12 ): 5515 - 5524.
dc.identifier.citedreferenceRivard MJ, Melhus CS, Granero D, et al. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo- based brachytherapy dose distributionsa). Med Phys. 2009; 36 ( 6Part1 ): 1968 - 1975.
dc.identifier.citedreferenceJohansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011; 38 ( 5 ): 2708 - 2714.
dc.identifier.citedreferenceKorhonen J, Kapanen M, Keyrilainen J, et al. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI- based radiotherapy treatment planning of prostate cancer. Med Phys. 2014; 41 ( 1 ): 011704.
dc.identifier.citedreferenceEdmund JM, Kjer HM, Van Leemput K, et al. A voxel- based investigation for MRI- only radiotherapy of the brain using ultra short echo times. Phys Med Biol. 2014; 59 ( 23 ): 7501 - 7519.
dc.identifier.citedreferenceSjolund J, Forsberg D, Andersson M, et al. Generating patient specific pseudo- CT of the head from MR using atlas- based regression. Phys Med Biol. 2015; 60 ( 2 ): 825 - 839.
dc.identifier.citedreferenceDowling JA, Lambert J, Parker J, et al. An atlas- based electron density mapping method for magnetic resonance imaging (MRI)- alone treatment planning and adaptive MRI- based prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012; 83 ( 1 ): e5 - 11.
dc.identifier.citedreferenceGudur MS, Hara W, Le QT, et al. A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Phys Med Biol. 2014; 59 ( 21 ): 6595 - 6606.
dc.identifier.citedreferenceSiversson C, Nordstrom F, Nilsson T, et al. Technical Note: mRI only prostate radiotherapy planning using the statistical decomposition algorithm. Med Phys. 2015; 42 ( 10 ): 6090 - 6097.
dc.identifier.citedreferenceKanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013; 37 ( 3 ): 501 - 530.
dc.identifier.citedreferenceKanal E, Greenberg TD, Hoff MN, et al. ACR manual on MR safety. https://www.acr.org/- /media/ACR/Files/Radiology- Safety/MR- Safety/Manual- on- MR- Safety.pdf
dc.identifier.citedreferenceShellock FG. Reference Manual for Magnetic Resonance Safety, Implants, and Devices: Edition 2017. Biomedical Research Publishing Group; 2017.
dc.identifier.citedreferenceHartwig V, Giovannetti G, Vanello N, et al. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009; 6: 1778 - 1798.
dc.identifier.citedreferenceNixon E, Kim Y, Kearney WR, et al. HDR brachytherapy tandem and ovoid titanium applicator safety assessment in 3T MRI. Brachytherapy. 2008; 7 ( 2 ): 135 - 136.
dc.identifier.citedreferenceWoods TO. Standards for medical devices in MRI: present and future. J Magn Reson Imaging. 2007; 26: 1186 - 1189.
dc.identifier.citedreferenceInternational A. ASTM F2503- 05 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. ASTM International; 2005.
dc.identifier.citedreferenceInternational A. ASTM F2052- 06 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment. ASTM International; 2006.
dc.identifier.citedreferenceInternational A. ASTM F2213- 06 Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment. ASTM International; 2006.
dc.identifier.citedreferenceMurbach M, Zastrow E, Neufeld E, et al. Heating and safety concerns of the radio- frequency field in MRI. Curr Radiol Rep. 2015; 3 ( 12 ): 45.
dc.identifier.citedreferenceKim Y, Chesnut D, Wagner BS, et al. Ferromagnetic metal side- rails on air- hover HDR patient transport table can cause severe skin burns to patients during MR simulation for brachytherapy. Int J Radiat Oncol Biol Phys. 2017; 99 ( 2 ): E556 - E557.
dc.identifier.citedreferenceRockey WR, Bhatia SK, Jacobson GM, et al. The dosimetric impact of vaginal balloon- packing on intracavitary high- dose- rate brachytherapy for gynecological cancer. J Contemp Brachytherapy. 2013; 5 ( 1 ): 17 - 22.
dc.identifier.citedreferenceBou- Zeid W, Bauer C, Kim Y, et al. Clinical validation of a real- time applicator position monitoring system for gynecologic intracavitary brachytherapy. Biomed Phys Eng Express. 2016; 2: 045008.
dc.identifier.citedreferenceXia J, Waldron T, Kim Y. A real- time applicator position monitoring system (RAPS) for high- dose- rate intracavitary brachytherapy. Med Phys. 2013; 40: 465.
dc.identifier.citedreferenceAndrew M, Kim Y, Ginader T, et al. Reduction of applicator displacement in MR/CT- guided cervical cancer HDR brachytherapy by the use of patient hover transport system. J Contemp Brachytherapy. 2018; 10 ( 1 ): 85 - 90.
dc.identifier.citedreferenceGerszten K, Faul C, Kounelis S, et al. The impact of adjuvant radiotherapy on carcinosarcoma of the uterus. Gynecol Oncol. 1998; 68 ( 1 ): 8 - 13.
dc.identifier.citedreferenceSiemens Healthineers. Magnetom Skyra - Transforming 3T productivity. 2010; https://static.healthcare.siemens.com/siemens_hwem- hwem_ssxa_websites- context- root/wcm/idc/groups/public/@us/@imaging/@mri/documents/download/mdaw/ndq3/~edisp/mri- magnetom- skyra- usa- product- brochure- 00308805.pdf
dc.identifier.citedreferenceChan MF, Cohen GN, Deasy JO. Qualitative evaluation of fiducial markers for radiotherapy imaging. Technol Cancer Res Treat. 2015; 14 ( 3 ): 298 - 304.
dc.identifier.citedreferenceOsman SOS, Russell E, King RB, et al. Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi- modality imaging. Radiat Oncol. 2019; 14 ( 1 ): 237.
dc.identifier.citedreferenceErickson BA, Bittner NHJ, Chadha M, et al. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of radionuclide- based high- dose- rate brachytherapy. Brachytherapy. 2017; 16 ( 1 ): 75 - 84.
dc.identifier.citedreferenceHuq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016; 43 ( 7 ): 4209 - 4262.
dc.identifier.citedreferenceKim H, Houser CJ, Kalash R, et al. Workflow and efficiency in MRI- based high- dose- rate brachytherapy for cervical cancer in a high- volume brachytherapy center. Brachytherapy. 2018; 17 ( 5 ): 753 - 760.
dc.identifier.citedreferenceFord EC, Gaudette R, Myers L, et al. Evaluation of safety in a radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol Biol Phys. 2009; 74 ( 3 ): 852 - 858.
dc.identifier.citedreferenceRath F. Tools for developing a quality management program: proactive tools (process mapping, value stream mapping, fault tree analysis, and failure mode and effects analysis). Int J Radiat Oncol Biol Phys. 2008; 71 ( 1 ): S187 - 190.
dc.identifier.citedreferenceMayadev J, Dieterich S, Harse R, et al. A failure modes and effects analysis study for gynecologic high- dose- rate brachytherapy. Brachytherapy. 2015; 14 ( 6 ): 866 - 875.
dc.identifier.citedreferenceRichardson S, Scanderbeg D, Swamidas J. FMEA for brachytherapy. In: Song WY, Tanderup K, Pieters BR, eds. Emerging Technologies in Brachytherapy. CRC Press, Taylor & Francis Group; 2017.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.