Show simple item record

Ionic Conductive and Highly‐Stable Interface for Alkali Metal Anodes

dc.contributor.authorJin, Enzhong
dc.contributor.authorTantratian, Karnpiwat
dc.contributor.authorZhao, Changtai
dc.contributor.authorCodirenzi, Anastasia
dc.contributor.authorGoncharova, Lyudmila V.
dc.contributor.authorWang, Changhong
dc.contributor.authorYang, Feipeng
dc.contributor.authorWang, Yijia
dc.contributor.authorPirayesh, Parham
dc.contributor.authorGuo, Jinghua
dc.contributor.authorChen, Lei
dc.contributor.authorSun, Xueliang
dc.contributor.authorZhao, Yang
dc.date.accessioned2022-09-26T16:05:22Z
dc.date.available2023-09-26 12:05:20en
dc.date.available2022-09-26T16:05:22Z
dc.date.issued2022-08
dc.identifier.citationJin, Enzhong; Tantratian, Karnpiwat; Zhao, Changtai; Codirenzi, Anastasia; Goncharova, Lyudmila V.; Wang, Changhong; Yang, Feipeng; Wang, Yijia; Pirayesh, Parham; Guo, Jinghua; Chen, Lei; Sun, Xueliang; Zhao, Yang (2022). "Ionic Conductive and Highly‐Stable Interface for Alkali Metal Anodes." Small 18(33): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/174843
dc.description.abstractAlkali metals are regarded as the most promising candidates for advanced anode for the next‐generation batteries due to their high specific capacity, low electrochemical potential, and lightweight. However, critical problems of the alkali metal anodes, especially dendrite formation and interface stabilization, remain challenging to overcome. The solid electrolyte interphase (SEI) is a key factor affecting Li and Na deposition behavior and electrochemical performances. Herein, a facile and universal approach is successfully developed to fabricate ionic conductive interfaces for Li and Na metal anodes by modified atomic layer deposition (ALD). In this process, the Li metal (or Na metal) plays the role of Li (or Na) source without any additional Li (or Na) precursor during ALD. Moreover, the key questions about the influence of ALD deposition temperature on the compositions and structure of the coatings are addressed. The optimized ionic conductive coatings have significantly improved the electrochemical performances. In addition, the electrochemical phase‐field model is performed to prove that the ionic conductive coating is very effective in promoting uniform electrodeposition. This approach is universal and can be potentially applied to other different metal anodes. At the same time, it can be extended to other types of coatings or other deposition techniques.A facile and universal approach is developed to fabricate ionic conductive interfaces for alkali metal anodes by modified atomic layer deposition. The optimized ionic conductive coatings have significantly improved the electrochemical performances. This approach can be potentially applied to other different metal anodes. At the same time, it can be extended to other types of coatings and deposition techniques.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinterface engineering
dc.subject.otheratomic layer deposition
dc.subject.otheralkali metal anodes
dc.subject.othernext generation batteries
dc.titleIonic Conductive and Highly‐Stable Interface for Alkali Metal Anodes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174843/1/smll202203045_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174843/2/smll202203045-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174843/3/smll202203045.pdf
dc.identifier.doi10.1002/smll.202203045
dc.identifier.sourceSmall
dc.identifier.citedreferencea) B. Huang, Z. Zhao, Y. Sun, M. Wang, L. Chen, Y. Gu, Solid State Ion 2019, 338, 31; b) S. C. Jung, H. J. Kim, J. W. Choi, Y. K. Han, Nano Lett. 2014, 14, 6559.
dc.identifier.citedreferencea) G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang, F. Wang, Y. Liu, X. Xiong, Angew. Chem., Int. Ed. Engl. 2020, 59, 2055; b) D. H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, Z. Chen, Chem. Soc. Rev. 2020, 49, 5407.
dc.identifier.citedreferencea) Z. Han, C. Zhang, Q. Lin, Y. Zhang, Y. Deng, J. Han, D. Wu, F. Kang, Q. H. Yang, W. Lv, Small Methods 2021, 5, 2001035; b) Y. Chu, Y. Shen, F. Guo, X. Zhao, Q. Dong, Q. Zhang, W. Li, H. Chen, Z. Luo, L. Chen, Electrochem. Energy Rev. 2019, 3, 187.
dc.identifier.citedreferencea) R. Xu, X.‐B. Cheng, C. Yan, X.‐Q. Zhang, Y. Xiao, C.‐Z. Zhao, J.‐Q. Huang, Q. Zhang, Matter 2019, 1, 317; b) Z. Luo, X. Qiu, C. Liu, S. Li, C. Wang, G. Zou, H. Hou, X. Ji, Nano Energy 2021, 79, 105507.
dc.identifier.citedreferencea) H. Wang, Y. Liu, Y. Li, Y. Cui, Electrochem. Energy Rev. 2019, 2, 509; b) X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.
dc.identifier.citedreferencea) X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403; b) D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194; c) Y. Zhao, K. R. Adair, X. Sun, Energy Environ. Sci. 2018, 11, 2673; d)  S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Adv. Mater. 2021, 33, 2000721. e) Y.‐J. Lei, Z.‐C. Yan, W.‐H. Lai, S.‐L. Chou, Y.‐X. Wang, H.‐K. Liu, S.‐X. Dou, Electrochem. Energy Rev. 2020, 3, 766.
dc.identifier.citedreferencea) J. Liu, M. N. Banis, B. Xiao, Q. Sun, A. Lushington, R. Li, J. Guo, T.‐K. Sham, X. Sun, J. Mater. Chem. A 2015, 3, 24281; b) B. Wang, Y. Zhao, M. N. Banis, Q. Sun, K. R. Adair, R. Li, T. K. Sham, X. Sun, ACS Appl. Mater. Interfaces 2018, 10, 1654.
dc.identifier.citedreferenceL. Cheng, X. Qin, A. T. Lucero, A. Azcatl, J. Huang, R. M. Wallace, K. Cho, J. Kim, ACS Appl. Mater. Interfaces 2014, 6, 11834.
dc.identifier.citedreferencea) Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao, Y. Sun, T. Wu, X. Bi, K. Amine, J. Lu, X. Sun, Chem. Soc. Rev. 2021, 50, 3889; b) Y. Zhao, K. Zheng, X. Sun, Joule 2018, 2, 2583.
dc.identifier.citedreferencea) Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, D. Wang, Nat. Mater. 2019, 18, 384; b) Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang, T. Chen, H. Wang, A. T. Ngo, D. Wang, Nat. Energy 2020, 5, 534; c) J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y. Cui, Sci. Adv. 2017, 3, eaao3170; d) J. Wu, Z. Rao, X. Liu, Y. Shen, C. Fang, L. Yuan, Z. Li, W. Zhang, X. Xie, Y. Huang, Adv. Mater. 2021, 33, 2007428; e) X.‐D. Lin, Y. Gu, X.‐R. Shen, W.‐W. Wang, Y.‐H. Hong, Q.‐H. Wu, Z.‐Y. Zhou, D.‐Y. Wu, J.‐K. Chang, M.‐S. Zheng, B.‐W. Mao, Q.‐F. Dong, Energy Environ. Sci. 2021, 14, 1439; f) J. Xiao, P. Zhai, Y. Wei, X. Zhang, W. Yang, S. Cui, C. Jin, W. Liu, X. Wang, H. Jiang, Z. Luo, X. Zhang, Y. Gong, Nano Lett. 2020, 20, 3911.
dc.identifier.citedreferencea) R. Zhang, Y. Li, L. Qiao, D. Li, J. Deng, J. Zhou, L. Xie, Y. Hou, T. Wang, W. Tian, J. Cao, F. Cheng, B. Yang, K. Liang, P. Chen, B. Kong, Energy Storage Mater. 2021, 37, 123; b) Y. Sun, C. Zhao, K. R. Adair, Y. Zhao, L. V. Goncharova, J. Liang, C. Wang, J. Li, R. Li, M. Cai, T.‐K. Sham, X. Sun, Energy Environ. Sci. 2021, 14, 4085; c)  S. T. Oyakhire, W. Huang, H. Wang, D. T. Boyle, J. R. Schneider, C. Paula, Y. Wu, Y. Cui, S. F. Bent, Adv. Energy Mater. 2020, 10, 2002736; d) Y. Sun, M. Amirmaleki, Y. Zhao, C. Zhao, J. Liang, C. Wang, K. R. Adair, J. Li, T. Cui, G. Wang, R. Li, T. Filleter, M. Cai, T. K. Sham, X. Sun, Adv. Energy Mater. 2020, 10, 2001139; e) Y. Zhao, L. V. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B. Wang, W. Xiao, R. Li, X. Sun, Adv. Mater. 2017, 29, 1606663; f) Y. Zhao, L. V. Goncharova, Q. Zhang, P. Kaghazchi, Q. Sun, A. Lushington, B. Wang, R. Li, X. Sun, Nano Lett. 2017, 17, 5653; g) S. Zhang, Y. Zhao, F. Zhao, L. Zhang, C. Wang, X. Li, J. Liang, W. Li, Q. Sun, C. Yu, J. Luo, K. Doyle‐Davis, R. Li, T. K. Sham, X. Sun, Adv. Funct. Mater. 2020, 30, 2001118.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.