Show simple item record

Regional analysis of aluminum and steel flows into the American automotive industry

dc.contributor.authorHua, Nate P.
dc.contributor.authorKelly, Jarod C.
dc.contributor.authorLewis, Geoffrey M.
dc.contributor.authorKeoleian, Gregory A.
dc.date.accessioned2022-09-26T16:05:42Z
dc.date.available2023-09-26 12:05:40en
dc.date.available2022-09-26T16:05:42Z
dc.date.issued2022-08
dc.identifier.citationHua, Nate P.; Kelly, Jarod C.; Lewis, Geoffrey M.; Keoleian, Gregory A. (2022). "Regional analysis of aluminum and steel flows into the American automotive industry." Journal of Industrial Ecology 26(4): 1318-1332.
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/2027.42/174850
dc.description.abstractAluminum and steel represent the two most dominant metals in light‐duty vehicles, yet the flows of these materials into the American automotive industry have not been well characterized. This study proposes and implements a method for analyzing the flow of these metals into the automotive industry. We create a framework for performing regionally linked, sector‐specific material flow analyses and use this framework to trace flows of aluminum and steel entering the American automotive industry, focusing on flows downstream from raw material production. We show that automotive aluminum sheet and extrusions are sourced primarily from the NPCC (23%), SERC (20%), MRO (18%), and RFC (13%) North American Electric Reliability Corporation (NERC) regions, and a spatially unresolved local region within the United States and Canada (18%). We determine that primary aluminum is largely from Canada (70%), nearly all from Quebec (69%). Further upstream, alumina and bauxite originate mostly from Brazil, Australia, and Jamaica. We also show that finished automotive steel is sourced primarily from the RFC (63%) and SERC (20%) regions. The crude steel supply similarly originates mainly from the RFC (69%) and SERC (7%) regions. Upstream raw materials including coke, coking coal, iron ore, lime, and steel scrap are primarily sourced from the United States with only direct reduced iron and pig iron used in electric arc furnace steel production coming mostly from outside the United States. The framework developed here allows for increased spatial resolution of material flows, which can be used to develop more specific life cycle impact factors for life cycle assessments.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherindustrial ecology
dc.subject.othermaterial flow
dc.subject.othersteel
dc.subject.otherregional analysis
dc.subject.otheraluminum
dc.subject.otherautomotive industry
dc.titleRegional analysis of aluminum and steel flows into the American automotive industry
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174850/1/jiec13268.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174850/2/jiec13268_am.pdf
dc.identifier.doi10.1111/jiec.13268
dc.identifier.sourceJournal of Industrial Ecology
dc.identifier.citedreferencePauliuk, S., Wang, T., & Müller, D. B. ( 2012 ). Moving toward the circular economy: The role of stocks in the Chinese steel cycle. Environmental Science & Technology, 46 ( 1 ), 148 – 154. https://doi.org/10.1021/es201904c
dc.identifier.citedreferenceNakamura, S., Kondo, Y., Matsubae, K., Nakajima, K., & Nagasaka, T. ( 2011 ). UPIOM: A new tool of MFA and its application to the flow of iron and steel associated with car production. Environmental Science & Technology, 45 ( 3 ), 1114 – 1120. https://doi.org/10.1021/es1024299
dc.identifier.citedreferencePark, J., Hong, S., Kim, I., Lee, J., & Hur, T. ( 2011 ). Dynamic material flow analysis of steel resources in Korea. Resources, Conservation and Recycling, 55 ( 4 ), 456 – 462. https://doi.org/10.1016/j.resconrec.2010.12.007
dc.identifier.citedreferencePauliuk, S., Kondo, Y., Nakamura, S., & Nakajima, K. ( 2017 ). Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model. Resources, Conservation and Recycling, 116, 84 – 93. https://doi.org/10.1016/j.resconrec.2016.09.029
dc.identifier.citedreferencePauliuk, S., Wang, T., & Müller, D. B. ( 2013 ). Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resources, Conservation and Recycling, 71, 22 – 30. https://doi.org/10.1016/j.resconrec.2012.11.008
dc.identifier.citedreferenceReck, B. K., Chambon, M., Hashimoto, S., & Graedel, T. E. ( 2010 ). Global stainless steel cycle exemplifies China’s rise to metal dominance. Environmental Science & Technology, 44 ( 10 ), 3940 – 3946. https://doi.org/10.1021/es903584q
dc.identifier.citedreferenceSAPA. ( 2017 ). Annual report ( 2016 ). https://beta.sapagroup.com/contentassets/7544961626714d6da0ed9a36df2feba3/sapa-annual-report-2016.pdf
dc.identifier.citedreferenceSchnatterly, J. ( 2010 ). Watching our weight steel content of N. American auto. 2010 Autosteel Great Designs in Steel Seminar. https://www.autosteel.org/-/media/files/autosteel/great-designs-in-steel/gdis-2010/10—watching-our-weight-steel-content-of-n-american-auto.ashx
dc.identifier.citedreferenceSchnatterly, J. ( 2012 ). Trends in steel content of N. American auto. Autosteel Great Designs in Steel Seminar. https://www.autosteel.org/-/media/files/autosteel/great-designs-in-steel/gdis-2012/trends-in-steel-content-of-north-american-auto.ashx
dc.identifier.citedreferenceSebastian, B., & Thimons, M. ( 2017 ). Life cycle greenhouse gas and energy study of automotive lightweighting. Steel Recycling Institute. https://shop.steel.org/products/life-cycle-greenhouse-gas-and-energy-study-of-automotive-lightweighting-full-report
dc.identifier.citedreferenceSebastian, B., Thimons, M., & Hall, J. ( 2019 ). Personal communication over GoToMeeting on March 8, 2019.
dc.identifier.citedreferenceTolomeo, N., Fitzgerald, M., & Eckelman, J. ( 2019 ). US steel sector thrives as mills move up quality ladder. https://blogs.platts.com/2019/05/09/us-steel-mills-quality/
dc.identifier.citedreferenceTuck, C. A. ( 2018a ). 2015 Minerals yearbook iron ore. United States Geological Survey. https://s3-us-west-2.amazonaws.com/prd‐wret/assets/palladium/production/mineral-pubs/iron-ore/myb1-2015-feore.pdf
dc.identifier.citedreferenceTuck, C. A. ( 2018b ). 2017 Mineral commodity summary iron ore. United States Geological Survey. https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/iron-ore/mcs-2018-feore.pdf
dc.identifier.citedreferenceUnited Nations. ( 2019a ). UN comtrade database. https://comtrade.un.org/data/
dc.identifier.citedreferenceUnited States Energy Information Administration. ( 2018a ). Quarterly coal report October–December 2017. https://www.eia.gov/coal/production/quarterly/archive/012117q4.pdf
dc.identifier.citedreferenceUnited States Energy Information Administration. ( 2018b ). Coal data browser. https://www.eia.gov/coal/data/browser/
dc.identifier.citedreferenceUnited States Geological Survey. ( 2018 ). 2016 Minerals yearbook iron ore tables. https://www.usgs.gov/centers/nmic/iron‐ore‐statistics‐and‐information
dc.identifier.citedreferenceWang, P., Jiang, Z. Y., Geng, X. Y., & Hao, S. Y. ( 2013 ). Dynamic material flow analysis of steel resources in China based on circular economy theory. Advanced Materials Research, 813, 64 – 71. https://doi.org/10.4028/www.scientific.net/AMR.813.64
dc.identifier.citedreferenceWang, T., Müller, D. B., & Graedel, T. E. ( 2007 ). Forging the anthropogenic iron cycle. Environmental Science & Technology, 41 ( 14 ), 5120 – 5129. https://doi.org/10.1021/es062761t
dc.identifier.citedreferenceWorld Aluminum. ( 2017 ). IAI 2015 life cycle inventory summary by region and unit process. http://www.world‐aluminium.org/publications/
dc.identifier.citedreferenceWorld Steel Association. ( 2018 ). World steel in figures 2018. https://www.worldsteel.org/en/dam/jcr:f9359dff‐9546‐4d6b‐bed0‐996201185b12/World±Steel±in±Figures±2018.pdf
dc.identifier.citedreferenceWorld Steel Association. ( 2019 ). Fact sheet steel and raw materials. https://www.worldsteel.org/en/dam/jcr:16ad9bcd‐dbf5‐449f‐b42c‐b220952767bf/fact_raw%2520materials_2019.pdf
dc.identifier.citedreferenceYellishetty, M., & Mudd, G. M. ( 2014 ). Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. Journal of Cleaner Production, 84, 400 – 410. https://doi.org/10.1016/j.jclepro.2014.02.046
dc.identifier.citedreferenceYellishetty, M., Ranjith, P. G., & Tharumarajah, A. ( 2010 ). Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resources, Conservation and Recycling, 54 ( 12 ), 1084 – 1094. https://doi.org/10.1016/j.resconrec.2010.03.003
dc.identifier.citedreferenceUnited Nations. ( 2019b ). UN data. http://data.un.org/Default.aspx
dc.identifier.citedreferenceAluminum Association, Inc. ( 2013 ). The environmental footprint of semi‐finished aluminum products in North America. https://www.aluminum.org/sites/default/files/LCA_Report_Aluminum_Association_12_13.pdf
dc.identifier.citedreferenceAluminum Association, Inc. ( 2017 ). 2016 Aluminum statistical review. The Aluminum Association, Inc.
dc.identifier.citedreferenceAmerican Automotive Policy Council. ( 2017 ). United States investigation under Section 232 of the Trade Expansion Act of 1962 to determine the effects on USA national security of imports of steel. https://www.bis.doc.gov/index.php/232‐steel‐public‐comments/1734‐american‐automotive‐policy‐council‐public‐comment/file
dc.identifier.citedreferenceAmerican Iron and Steel Institute. ( 2018 ). 2017 Annual statistical report. The American Iron and Steel Institute.
dc.identifier.citedreferenceArgonne National Laboratory. ( 2018 ). GREET 1&2 Model 2018. https://greet.es.anl.gov/
dc.identifier.citedreferenceBertram, M., Ramkumar, S., Rechberger, H., Rombach, G., Bayliss, C., Martchek, K. J., Muller, D. B., & Liu, G. ( 2017 ). A regionally‐linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resources, Conservation and Recycling, 125, 48 – 69. https://doi.org/10.1016/j.resconrec.2017.05.014
dc.identifier.citedreferenceBray, E. L. ( 2018 ). 2016 Minerals yearbook bauxite and alumina. United States Geological Survey. https://prd‐wret.s3‐us‐west‐2.amazonaws.com/assets/palladium/production/atoms/files/myb1‐2016‐bauxi.pdf
dc.identifier.citedreferenceBuchner, H., Laner, D., Rechberger, H., & Fellner, J. ( 2014 ). In‐depth analysis of aluminum flows in Austria as a basis to increase resource efficiency. Resources, Conservation and Recycling, 93, 112 – 123. https://doi.org/10.1016/j.resconrec.2014.09.016
dc.identifier.citedreferenceBureau of International Recycling. ( 2018 ). World steel recycling in figures 2013–2017: Steel scrap—A raw material for steelmaking. BIR Global Facts and Figures Ferrous Metals. https://bir.org/news‐press/latest‐news/barcelona‐convention‐ferrous‐division‐9th‐edition‐of‐world‐steel‐recycling‐in‐figures/
dc.identifier.citedreferenceBushi, L. ( 2018 ). EDAG Silverado body lightweighting final LCA Report. The Aluminum Association, Inc. http://www.drivealuminum.org/wp‐content/uploads/2018/09/AA‐LWT‐Body‐Design_Final‐LCA‐Report_August‐2018.pdf
dc.identifier.citedreferenceCarbon Footprint. ( 2020 ). Country specific electricity grid greenhouse gas emission factors. https://www.carbonfootprint.com/docs/2020_09_emissions_factors_sources_for_2020_electricity_v14.pdf
dc.identifier.citedreferenceCheah, L., Heywood, J., & Kirchain, R. ( 2009 ). Aluminum stock and flows in USA passenger vehicles and implications for energy use. Journal of Industrial Ecology, 13 ( 5 ), 718 – 734. https://doi.org/10.1111/j.1530‐9290.2009.00176.x
dc.identifier.citedreferenceChen, W.‐Q. ( 2018 ). Dynamic product‐level analysis of in‐use aluminum stocks in the United States. Journal of Industrial Ecology, 22 ( 6 ), 1425 – 1435. https://doi.org/10.1111/jiec.12710
dc.identifier.citedreferenceChen, W.‐Q., & Graedel, T. E. ( 2012 ). Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009. Ecological Economics, 81, 92 – 102. https://doi.org/10.1016/j.ecolecon.2012.06.008
dc.identifier.citedreferenceChen, W.‐Q., & Shi, L. ( 2012 ). Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China’s aluminum production. Resources, Conservation and Recycling, 65, 18 – 28. https://doi.org/10.1016/j.resconrec.2012.05.003
dc.identifier.citedreferenceColett, J. S., Kelly J. C., & Keoleian G. A. ( 2016 ). Using nested average electricity allocation protocols to characterize electrical grids in life cycle assessment: A case study of U.S. primary aluminum production. Journal of Industrial Ecology, 20 ( 1 ), 29 – 41. https://doi.org/10.1111/jiec.12268
dc.identifier.citedreferenceCorathers, L. A. ( 2018a ). 2017 Mineral commodity summary lime. United States Geological Survey. https://s3‐us‐west‐2.amazonaws.com/prd‐wret/assets/palladium/production/mineral‐pubs/lime/mcs‐2018‐lime.pdf
dc.identifier.citedreferenceCorathers, L. A. ( 2018b ). 2015 Minerals yearbook lime. United States Geological Survey. https://s3‐us‐west‐2.amazonaws.com/prd‐wret/assets/palladium/production/mineral‐pubs/lime/myb1‐2015‐lime.pdf
dc.identifier.citedreferenceCullen, J. M., & Allwood, J. M. ( 2013 ). Mapping the global flow of aluminum: From liquid aluminum to end‐use goods. Environmental Science & Technology, 47 ( 7 ), 3057 – 3064. https://doi.org/10.1021/es304256s
dc.identifier.citedreferenceCullen, J. M., Allwood, J. M., & Bambach, M. D. ( 2012 ). Mapping the global flow of steel: From steelmaking to end‐use goods. Environmental Science & Technology, 46 ( 24 ), 13048 – 13055. https://doi.org/10.1021/es302433p
dc.identifier.citedreferenceDai, Q., Kelly, J. C., & Elgowainy, A. ( 2017 ). Life cycle analysis of 1995–2014 U.S. light‐duty vehicle fleet: The environmental implications of vehicle material composition changes. SAE International Journal of Materials and Manufacturing, 10 ( 3 ), 378 – 384. https://www.jstor.org/stable/2643579
dc.identifier.citedreferenceDing, N., Yang, J., & Liu, J. ( 2016 ). Substance flow analysis of aluminum industry in mainland China. Journal of Cleaner Production, 133, 1167 – 1180. https://doi.org/10.1016/j.jclepro.2016.05.129
dc.identifier.citedreferenceDucker FSG Holdings, LLC. ( 2017a ). Aluminum content in North American light vehicles 2016 to 2028. Drive Aluminum. http://www.drivealuminum.org/wp‐content/uploads/2017/10/Ducker‐Public_FINAL.pdf
dc.identifier.citedreferenceDucker FSG Holdings, LLC. ( 2017b ). Automotive lightweighting insights. Society of Automotive Analysts Lightweighting Summit. https://societyofautomotiveanalysts.wildapricot.org/resources/Documents/SAA_Ducker%20Worldwide%20Automotive%20Lightweighting%20September%2025%202017%20Distribution.pdf
dc.identifier.citedreferenceDucker FSG Holdings, LLC. ( 2018 ). NA automotive steel content market study final report executive summary. Steel Market Development Institute. https://www.autosteel.org/‐/media/files/autosteel/press/06—north‐american‐automotive‐steel‐content‐market‐study.ashx?la=en&hash=73F6BEED760F9C0ABED86D4A387C503A08328733
dc.identifier.citedreferenceFenton, M. ( 2018a ). 2017 Mineral commodity summary iron and steel. United States Geological Survey. https://s3‐us‐west‐2.amazonaws.com/prd‐wret/assets/palladium/production/mineral‐pubs/iron‐steel/mcs‐2018‐feste.pdf
dc.identifier.citedreferenceFenton, M. ( 2018b ). 2017 Mineral commodity summary iron and steel scrap. United States Geological Survey. https://s3‐us‐west‐2.amazonaws.com/prd‐wret/assets/palladium/production/mineral‐pubs/iron‐steel‐scrap/mcs‐2018‐fescr.pdf
dc.identifier.citedreferenceFenton, M., & Tuck, C. A. ( 2019 ). 2016 Minerals yearbook iron and steel. United States Geological Survey. https://prd‐wret.s3‐us‐west‐2.amazonaws.com/assets/palladium/production/atoms/files/myb1‐2016‐feste.pdf
dc.identifier.citedreferenceFord. ( 2017 ). One chip at a time: How one engineer’s innovation has Ford now recycling 20 million pounds of aluminum a month. https://media.ford.com/content/fordmedia/fna/us/en/news/2017/04/21/ford‐recycling‐20‐million‐pounds‐of‐aluminum‐monthly.html
dc.identifier.citedreferenceGeyer, R., Davis, J., Ley, J., He, J., Clift, R., Kwan, A., Sansom, M., & Jackson, T. ( 2007 ). Time‐dependent material flow analysis of iron and steel in the UK: Part 1: Production and consumption trends 1970–2000. Resources, Conservation and Recycling, 51 ( 1 ), 101 – 117. https://doi.org/10.1016/j.resconrec.2006.08.006
dc.identifier.citedreferenceGlobal Aluminum Recycling Committee. ( 2009 ). Global aluminum recycling: A cornerstone of sustainable development. http://www.world‐aluminium.org/media/filer_public/2013/01/15/fl0000181.pdf
dc.identifier.citedreferenceHadad, J. ( 2017 ). IBISWorld industry report 33111 iron & steel manufacturing in the US. IBISWorld. https://www.ibisworld.com
dc.identifier.citedreferenceHatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. ( 2010 ). Outlook of the world steel cycle based on the stock and flow dynamics. Environmental Science & Technology, 44 ( 16 ), 6457 – 6463. https://doi.org/10.1021/es100044n
dc.identifier.citedreferenceHatayama, H., Yamada, H., Daigo, I., Matsuno, Y., & Adachi, Y. ( 2007 ). Dynamic substance flow analysis of aluminum and its alloying elements. Materials Transactions, 0708200173. https://doi.org/10.2320/matertrans.MRA2007102
dc.identifier.citedreferenceHirato, T., Daigo, I., Matsuno, Y., & Adachi, Y. ( 2009 ). In‐use stock of steel estimated by top‐down approach and bottom‐up approach. ISIJ International, 49 ( 12 ), 1967 – 1971. https://doi.org/10.2355/isijinternational.49.1967
dc.identifier.citedreferenceHua, N., Keoleian, G. & Lewis, G. ( 2019 ). Regional‐level analysis for the material flows and process energy demands of aluminum and steel in the American automotive industry (Report # CSS19‐48). Center for Sustainable Systems. http://css.umich.edu/sites/default/files/publication/CSS19‐48.pdf
dc.identifier.citedreferenceInstitute for Industrial Productivity. ( 2019a ). Coke making. Industrial Efficiency Technology Database. http://ietd.iipnetwork.org/content/coke‐making
dc.identifier.citedreferenceInstitute for Industrial Productivity. ( 2019b ). Direct reduced iron. Industrial Efficiency Technology Database. http://ietd.iipnetwork.org/content/direct‐reduced‐iron
dc.identifier.citedreferenceInternational Energy Agency. ( 2019 ). Statistics data browser. https://www.iea.org/statistics/?country=WORLD&year=2016&category=Coal&indicator=CoalProdByType&mode=chart&dataTable=COALANDPEAT
dc.identifier.citedreferenceKelly, J. C., Sullivan, J. L., Burnham, A., & Elgowainy, A. ( 2015 ). Impacts of vehicle weight reduction via material substitution on life‐cycle greenhouse gas emissions. Environmental Science & Technology, 49 ( 20 ), 12535 – 12542. https://doi.org/10.1021/acs.est.5b03192
dc.identifier.citedreferenceLiu, G., & Müller, D. B. ( 2013 ). Mapping the global journey of anthropogenic aluminum: A trade‐linked multilevel material flow analysis. Environmental Science & Technology, 47 ( 20 ), 11873 – 11881. https://doi.org/10.1021/es4024404
dc.identifier.citedreferenceMartchek, K. ( 2006 ). Modelling more sustainable aluminium. The International Journal of Life Cycle Assessment, 11 ( 1 ), 34 – 37. https://doi.org/10.1065/lca2006.01.231
dc.identifier.citedreferenceMega Associates Ltd. (n.d.). NAFTA steel to new auto. American Iron and Steel Institute.
dc.identifier.citedreferenceMenzie, W. D., Barry, J. J., Bleiwas, D. I., Bray, E. L., Goonan, T. G., & Matos, G. ( 2010 ). The global flow of aluminum from 2006 through 2025 (USGS Numbered Series No. 2010‐1256). United States Geological Survey. http://pubs.er.usgs.gov/publication/ofr20101256
dc.identifier.citedreferenceMidrex Technologies, Inc. ( 2018 ). 2017 World direct reduction statistics. https://www.midrex.com/assets/user/news/MidrexStatsBook2017.5_.24_.18_.pdf
dc.identifier.citedreferenceMiles, R. ( 2017 ). 33639 Auto parts manufacturing in the US. IBISWorld Industry Report. https://www.ibisworld.com
dc.identifier.citedreferenceMilovanoff, A., Posen, I. D., & MacLean, H. L. ( 2021 ). Quantifying environmental impacts of primarily aluminum ingot production and consumption. Journal of Industrial Ecology, 25 ( 1 ), 67 – 78. https://doi.org/10.1111/jiec.13051
dc.identifier.citedreferenceMüller, D. B., Wang, T., Duval, B., & Graedel, T. E. ( 2006 ). Exploring the engine of anthropogenic iron cycles. Proceedings of the National Academy of Sciences, 103 ( 44 ), 16111 – 16116. https://doi.org/10.1073/pnas.0603375103
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.