Show simple item record

High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight

dc.contributor.authorFreire, Bruna Lucheze
dc.contributor.authorHomma, Thais Kataoka
dc.contributor.authorLerario, Antônio Marcondes
dc.contributor.authorSeo, Go Hun
dc.contributor.authorHan, Heonjong
dc.contributor.authorAssis Funari, Mariana Ferreira
dc.contributor.authorGomes, Nathalia Lisboa
dc.contributor.authorRosemberg, Carla
dc.contributor.authorKrepischi, Ana Cristina Victorino
dc.contributor.authorAndrade Vasques, Gabriela
dc.contributor.authorMalaquias, Alexsandra Christianne
dc.contributor.authorLima Jorge, Alexander Augusto
dc.date.accessioned2022-09-26T16:05:47Z
dc.date.available2023-10-26 12:05:45en
dc.date.available2022-09-26T16:05:47Z
dc.date.issued2022-09
dc.identifier.citationFreire, Bruna Lucheze; Homma, Thais Kataoka; Lerario, Antônio Marcondes ; Seo, Go Hun; Han, Heonjong; Assis Funari, Mariana Ferreira; Gomes, Nathalia Lisboa; Rosemberg, Carla; Krepischi, Ana Cristina Victorino; Andrade Vasques, Gabriela; Malaquias, Alexsandra Christianne; Lima Jorge, Alexander Augusto (2022). "High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight." American Journal of Medical Genetics Part A 188(9): 2599-2604.
dc.identifier.issn1552-4825
dc.identifier.issn1552-4833
dc.identifier.urihttps://hdl.handle.net/2027.42/174852
dc.description.abstractMost infants born with very low birth weight (VLBW, birth weight < 1500 g) show spontaneous catch‐up growth in postnatal life. The reasons for the absence of catch‐up growth are not entirely understood. We performed a comprehensive investigation of 52 children born with VLBW. Ten children had a history of an external cause that explained the VLBW and five refused genetic evaluation. Twenty‐three cases were initially evaluated by a candidate gene approach. Patients with a negative result in the candidate gene approach (n = 14) or without clinical suspicion (n = 14) were assessed by chromosome microarray analysis (CMA) and/or whole‐exome sequencing (WES). A genetic condition was identified in 19 of 37 (51.4%) patients without an external cause, nine by candidate gene approach, and 10 by a genomic approach (CMA/WES). Silver–Russell syndrome was the most frequent diagnosis (n = 5) and the remaining patients were diagnosed with other rare monogenic conditions. Almost all patients with a positive genetic diagnosis exhibited syndromic features (94.4%). However, microcephaly, neurodevelopmental disorders, major malformation, or facial dysmorphism were also frequently observed in children with an external cause. In conclusion, a significant proportion of children born with VLBW with persistent short stature have a genetic/epigenetic condition.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othergenetics
dc.subject.othervery low birth weight
dc.subject.othershort stature
dc.subject.othernext‐generation sequencing
dc.titleHigh frequency of genetic/epigenetic disorders in short stature children born with very low birth weight
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHuman Genetics
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174852/1/ajmga62892_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174852/2/ajmga62892.pdf
dc.identifier.doi10.1002/ajmg.a.62892
dc.identifier.sourceAmerican Journal of Medical Genetics Part A
dc.identifier.citedreferenceCollett‐Solberg, P. F., Ambler, G., Backeljauw, P. F., Bidlingmaier, M., Biller, B. M. K., Boguszewski, M. C. S., Cheung, P. T., Choong, C. S. Y., Cohen, L. E., Cohen, P., Dauber, A., Deal, C. L., Gong, C., Hasegawa, Y., Hoffman, A. R., Hofman, P. L., Horikawa, R., Jorge, A. A. L., Juul, A., … Woelfle, J. ( 2019a ). Diagnosis, genetics, and therapy of short stature in children: A growth hormone research society international perspective. Hormone Research in Pædiatrics, 92, 1 – 14. https://doi.org/10.1159/000502231
dc.identifier.citedreferenceBoguszewski, M. C., Mericq, V., Bergada, I., Damiani, D., Belgorosky, A., Gunczler, P., Ortiz, T., Llano, M., Domene, H. M., Calzada‐Leon, R., Blanco, A., Barrientos, M., Procel, P., Lanes, R., & Jaramillo, O. ( 2011 ). Latin American consensus: Children born small for gestational age. BMC Pediatrics, 11, 66. https://doi.org/10.1186/1471-2431-11-66
dc.identifier.citedreferenceWit, J. M., Finken, M. J., Rijken, M., & de Zegher, F. ( 2006 ). Preterm growth restraint: A paradigm that unifies intrauterine growth retardation and preterm extrauterine growth retardation and has implications for the small‐for‐gestational‐age indication in growth hormone therapy. Pediatrics, 117, e793 – e795. https://doi.org/10.1542/peds.2005-1705
dc.identifier.citedreferenceFreire, B. L., Homma, T. K., Funari, M. F. A., Lerario, A. M., Vasques, G. A., Malaquias, A. C., Arnhold, I. J. P., & Jorge, A. A. L. ( 2019 ). Multigene sequencing analysis of children born small for gestational age with isolated short stature. The Journal of Clinical Endocrinology and Metabolism, 104, 2023 – 2030. https://doi.org/10.1210/jc.2018-01971
dc.identifier.citedreferenceFinken, M. J. J., van der Steen, M., Smeets, C. C. J., Walenkamp, M. J. E., de Bruin, C., Hokken‐Koelega, A. C. S., & Wit, J. M. ( 2018 ). Children born small for gestational age: Differential diagnosis, molecular genetic evaluation, and implications. Endocrine Reviews, 39, 851 – 894. https://doi.org/10.1210/er.2018-00083
dc.identifier.citedreferenceDemidov, G., & Ossowski, S. ( 2019 ). ClinCNV: Novel method for allele‐specific somatic copy‐number alterations detection. bioRxiv, 837971. https://doi.org/10.1101/837971
dc.identifier.citedreferenceDauber, A. ( 2019 ). Genetic testing for the child with short stature‐has the time come to change our diagnostic paradigm? The Journal of Clinical Endocrinology and Metabolism, 104, 2766 – 2769. https://doi.org/10.1210/jc.2019-00019
dc.identifier.citedreferenceCrump, C. ( 2020 ). An overview of adult health outcomes after preterm birth. Early Human Development, 150, 105187. https://doi.org/10.1016/j.earlhumdev.2020.105187
dc.identifier.citedreferenceCollett‐Solberg, P. F., Jorge, A. A. L., Boguszewski, M. C. S., Miller, B. S., Choong, C. S. Y., Cohen, P., Hoffman, A. R., Luo, X., Radovick, S., & Saenger, P. ( 2019b ). Growth hormone therapy in children; research and practice ‐ a review. Growth Hormone & IGF Research, 44, 20 – 32. https://doi.org/10.1016/j.ghir.2018.12.004
dc.identifier.citedreferenceArai, S., Sato, Y., Muramatsu, H., Yamamoto, H., Aoki, F., Okai, Y., Kataoka, S., Hanada, Y., Hamada, M., Morimoto, Y., Kojima, S., Natsume, J., Takahashi, Y., & Nagoya Collaborative Clinical Research T. ( 2019 ). Risk factors for absence of catch‐up growth in small for gestational age very low‐birthweight infants. Pediatrics International, 61, 889 – 894. https://doi.org/10.1111/ped.13939
dc.identifier.citedreferenceYaghootkar, H., & Freathy, R. M. ( 2012 ). Genetic origins of low birth weight. Current Opinion in Clinical Nutrition and Metabolic Care, 15, 258 – 264. https://doi.org/10.1097/MCO.0b013e328351f543
dc.identifier.citedreferenceWakeling, E. L., Brioude, F., Lokulo‐Sodipe, O., O’Connell, S. M., Salem, J., Bliek, J., Canton, A. P., Chrzanowska, K. H., Davies, J. H., Dias, R. P., Dubern, B., Elbracht, M., Giabicani, E., Grimberg, A., Grønskov, K., Hokken‐Koelega, A. C., Jorge, A. A., Kagami, M., Linglart, A., … Netchine, I. ( 2017 ). Diagnosis and management of silver‐Russell syndrome: First international consensus statement. Nature Reviews. Endocrinology, 13, 105 – 124. https://doi.org/10.1038/nrendo.2016.138
dc.identifier.citedreferenceVan de Pol, C., & Allegaert, K. ( 2020 ). Growth patterns and body composition in former extremely low birth weight (ELBW) neonates until adulthood: A systematic review. European Journal of Pediatrics, 179, 757 – 771. https://doi.org/10.1007/s00431-019-03552-z
dc.identifier.citedreferenceSeo, G. H., Kim, T., Choi, I. H., Park, J. Y., Lee, J., Kim, S., Won, D. G., Oh, A., Lee, Y., Choi, J., Lee, H., Kang, H. G., Cho, H. Y., Cho, M. H., Kim, Y. J., Yoon, Y. H., Eun, B. L., Desnick, R. J., Keum, C., & Lee, B. H. ( 2020 ). Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clinical Genetics, 98, 562 – 570. https://doi.org/10.1111/cge.13848
dc.identifier.citedreferenceRichards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier‐Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & Committee, A. L. Q. A. ( 2015 ). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17, 405 – 424. https://doi.org/10.1038/gim.2015.30
dc.identifier.citedreferenceRausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V., & Korbel, J. O. ( 2012 ). DELLY: Structural variant discovery by integrated paired‐end and split‐read analysis. Bioinformatics, 28, i333 – i339. https://doi.org/10.1093/bioinformatics/bts378
dc.identifier.citedreferenceMintz, C. S., Seaver, L. H., Irons, M., Grimberg, A., Lozano, R., Practice, A. P., & Guidelines, C. ( 2021 ). Focused revision: ACMG practice resource: Genetic evaluation of short stature. Genetics in Medicine, 23, 813 – 815. https://doi.org/10.1038/s41436-020-01046-0
dc.identifier.citedreferenceKuczmarski, R. J., Ogden, C. L., Grummer‐Strawn, L. M., Flegal, K. M., Guo, S. S., Wei, R., Mei, Z., Curtin, L. R., Roche, A. F., & Johnson, C. L. ( 2000 ). CDC growth charts: United States. Advance Data, (314), 1 – 27.
dc.identifier.citedreferenceHomma, T. K., Krepischi, A. C. V., Furuya, T. K., Honjo, R. S., Malaquias, A. C., Bertola, D. R., Costa, S. S., Canton, A. P., Roela, R. A., Freire, B. L., Kim, C. A., Rosenberg, C., & Jorge, A. A. L. ( 2018 ). Recurrent copy number variants associated with syndromic short stature of unknown cause. Hormone Research in Pædiatrics, 89, 13 – 21. https://doi.org/10.1159/000481777
dc.identifier.citedreferenceHomma, T. K., Freire, B. L., Honjo Kawahira, R. S., Dauber, A., Funari, M. F. A., Lerario, A. M., Nishi, M. Y., Albuquerque, E. V., Vasques, G. A., Collett‐Solberg, P. F., Miura Sugayama, S. M., Bertola, D. R., Kim, C. A., Arnhold, I. J. P., Malaquias, A. C., & Jorge, A. A. L. ( 2019 ). Genetic disorders in prenatal onset syndromic short stature identified by exome sequencing. The Journal of Pediatrics, 215, 192 – 198. https://doi.org/10.1016/j.jpeds.2019.08.024
dc.identifier.citedreferenceHollanders, J. J., van der Pal, S. M., van Dommelen, P., Rotteveel, J., & Finken, M. J. J. ( 2017 ). Growth pattern and final height of very preterm vs. very low birth weight infants. Pediatric Research, 82, 317 – 323. https://doi.org/10.1038/pr.2017.63
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.