Show simple item record

Distributional independent component analysis for diverse neuroimaging modalities

dc.contributor.authorWu, Ben
dc.contributor.authorPal, Subhadip
dc.contributor.authorKang, Jian
dc.contributor.authorGuo, Ying
dc.date.accessioned2022-10-05T15:51:14Z
dc.date.available2023-10-05 11:51:12en
dc.date.available2022-10-05T15:51:14Z
dc.date.issued2022-09
dc.identifier.citationWu, Ben; Pal, Subhadip; Kang, Jian; Guo, Ying (2022). "Distributional independent component analysis for diverse neuroimaging modalities." Biometrics 78(3): 1092-1105.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/174909
dc.description.abstractRecent advances in neuroimaging technologies have provided opportunities to acquire brain images of different modalities for studying human brain organization from both functional and structural perspectives. Analysis of images derived from various modalities involves some common goals such as dimension reduction, denoising, and feature extraction. However, since these modalities have vastly different data characteristics, the current analysis is usually performed using distinct analytical tools that are only suitable for a specific imaging modality. In this paper, we present a Distributional Independent Component Analysis (DICA) that represents a new approach that performs decomposition on the distribution level, providing a unified framework for extracting features across imaging modalities with different scales and representations. When applying DICA to fMRI images, we successfully recover well-established brain functional networks in neuroscience literature, providing empirical validation that DICA delivers neurologically relevant findings. More importantly, we discover several structural network components when applying DICA to DTI images. Through fiber tracking, we find these DICA-derived structural components correspond to several major white fiber bundles. To the best of our knowledge, this is the first time these fiber bundles are successfully identified via blind source separation on single subject DTI images. We also evaluate the performance of DICA as compared with existing ICA methods through extensive simulation studies.
dc.publisherWiley Periodicals, Inc.
dc.publisherIEEE
dc.subject.otherfMRI
dc.subject.otherindependent component analysis
dc.subject.othermultimodality neuroimaging
dc.subject.otherDTI
dc.titleDistributional independent component analysis for diverse neuroimaging modalities
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174909/1/biom13594_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174909/2/biom13594-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174909/3/biom13594.pdf
dc.identifier.doi10.1111/biom.13594
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceMcKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J. et al. ( 1998 ) Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160 – 188.
dc.identifier.citedreferenceGuo, Y. & Pagnoni, G. ( 2008 ) A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage, 42, 1078 – 1093.
dc.identifier.citedreferenceGuo, Y. & Tang, L. ( 2013 ) A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies. Biometrics, 69, 970 – 981.
dc.identifier.citedreferenceGuye, M., Bartolomei, F. & Ranjeva, J.P. ( 2008 ) Imaging structural and functional connectivity: towards a unified definition of brain organization? Current Opinion in Neurology, 21, 393 – 403.
dc.identifier.citedreferenceHallin, M. & Mehta, C. ( 2015 ) R-estimation for asymmetric independent component analysis. Journal of the American Statistical Association, 110, 218 – 232.
dc.identifier.citedreferenceHastie, T. & Tibshirani, R. ( 2003 ) Independent components analysis through product density estimation. Advances in Neural Information Processing Systems, 15, 665 – 672.
dc.identifier.citedreferenceHyvarinen, A. ( 1999 ) Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626 – 634.
dc.identifier.citedreferenceHyvärinen, A., Karhunen, J. & Oja, E. ( 2001 ) Independent Component Analysis. Hoboken, NJ: John Wiley & Sons.
dc.identifier.citedreferenceKoay, C.G., Chang, L.-C., Carew, J.D., Pierpaoli, C. & Basser, P.J. ( 2006 ) A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. Journal of Magnetic Resonance, 182, 115 – 125.
dc.identifier.citedreferenceLe, Q., Karpenko, A., Ngiam, J. & Ng, A. ( 2011 ) ICA with reconstruction cost for efficient overcomplete feature learning. Advances in Neural Information Processing Systems, 24, 1017 – 1025.
dc.identifier.citedreferenceLi, Y.O., Yang, F.G., Nguyen, C.T., Cooper, S.R., LaHue, S.C., Venugopal, S. et al. ( 2012 ) Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Human Brain Mapping, 33, 1431 – 1451.
dc.identifier.citedreferenceMcKeown, M.J. & Sejnowski, T.J. ( 1998 ) Independent component analysis of fMRI data: examining the assumptions. Human Brain Mapping, 6, 368 – 372.
dc.identifier.citedreferenceMinka, T.P. ( 2000 ) Automatic choice of dimensionality for PCA. NIPS, 13, 598 – 604.
dc.identifier.citedreferenceNgiam, J., Chen, Z., Chia, D., Koh, P., Le, Q. & Ng, A. ( 2010 ) Tiled convolutional neural networks. Advances in Neural Information Processing Systems, 23, 1279 – 1287.
dc.identifier.citedreferenceNielsen, F. ( 2012 ) k-MLE: A fast algorithm for learning statistical mixture models. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 869 – 872.
dc.identifier.citedreferenceOuyang, X., Chen, K., Yao, L., Wu, X., Zhang, J., Li, K. et al. ( 2015 ) Independent component analysis-based identification of covariance patterns of microstructural white matter damage in Alzheimer’s disease. PLoS ONE, 10, e0119714.
dc.identifier.citedreferenceRamnani, N., Behrens, T.E., Penny, W. & Matthews, P.M. ( 2004 ) New approaches for exploring anatomical and functional connectivity in the human brain. Biological Psychiatry, 56, 613 – 619.
dc.identifier.citedreferenceSaint-Jean, C. & Nielsen, F. ( 2014 ) Hartigan’s method for k-MLE: Mixture modeling with wishart distributions and its application to motion retrieval. In Nielsen, F. (ed.), Geometric Theory of Information. Berlin: Springer. pp. 301 – 330.
dc.identifier.citedreferenceSatterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M.E. et al. ( 2014 ) Neuroimaging of the philadelphia neurodevelopmental cohort. NeuroImage, 86, 544 – 553.
dc.identifier.citedreferenceShi, R. & Guo, Y. ( 2016 ) Investigating differences in brain functional networks using hierarchical covariate-adjusted independent component analysis. The Annals of Applied Statistics, 10, 1930 – 1957.
dc.identifier.citedreferenceSmith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E. et al. ( 2009 ) Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106, 13040 – 13045.
dc.identifier.citedreferenceSmith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L. et al. ( 2013 ) Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17, 666 – 682.
dc.identifier.citedreferenceWang, T., Lei, Y., Fu, Y., Wynne, J.F., Curran, W.J., Liu, T. et al. ( 2020 ) A review on medical imaging synthesis using deep learning and its clinical applications. Journal of Applied Clinical Medical Physics, 22, 11 – 36.
dc.identifier.citedreferenceWang, Y. & Guo, Y. ( 2019 ) A hierarchical independent component analysis model for longitudinal neuroimaging studies. NeuroImage, 189, 380 – 400.
dc.identifier.citedreferenceBeckmann, C.F. & Smith, S.M. ( 2005 ) Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25, 294 – 311.
dc.identifier.citedreferenceAbdelnour, F., Dayan, M., Devinsky, O., Thesen, T. & Raj, A. ( 2018 ) Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure. NeuroImage, 172, 728 – 739.
dc.identifier.citedreferenceAdali, T., Anderson, M. & Fu, G.-S. ( 2014 ) Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging. IEEE Signal Processing Magazine, 31, 18 – 33.
dc.identifier.citedreferenceAlmeida, L.B. ( 2003 ) Misep–linear and nonlinear ICA based on mutual information. Journal of Machine Learning Research, 4, 1297 – 1318.
dc.identifier.citedreferenceBartlett, M.S., Movellan, J.R. & Sejnowski, T.J. ( 2002 ) Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13, 1450 – 1464.
dc.identifier.citedreferenceBasser, P.J., Mattiello, J. & LeBihan, D. ( 1994 ) Mr diffusion tensor spectroscopy and imaging. Biophysical Journal, 66, 259 – 267.
dc.identifier.citedreferenceBeckmann, C.F., DeLuca, M., Devlin, J.T. & Smith, S.M. ( 2005 ) Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 1001 – 1013.
dc.identifier.citedreferenceBell, A.J. & Sejnowski, T.J. ( 1995 ) An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129 – 1159.
dc.identifier.citedreferenceBoukouvalas, Z., Levin-Schwartz, Y., Calhoun, V.D. & Adalı, T. ( 2018 ) Sparsity and independence: balancing two objectives in optimization for source separation with application to fMRI analysis. Journal of the Franklin Institute, 355, 1873 – 1887.
dc.identifier.citedreferenceCalhoun, V.D., Adali, T., Pearlson, G.D. & Pekar, J. ( 2001 ) A method for making group inferences from fMRI data using independent component analysis. Human Brain Mapping, 14, 140 – 151.
dc.identifier.citedreferenceCalhoun, V.D., Liu, J. & Adalı, T. ( 2009 ) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, S163 – S172.
dc.identifier.citedreferenceCalhoun, V.D. & Sui, J. ( 2016 ) Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 1, 230 – 244.
dc.identifier.citedreferenceCatani, M. & Thiebaut de Schotten, M. ( 2008 ) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44, 1105 – 1132.
dc.identifier.citedreferenceDodero, L., Murino, V. & Sona, D. ( 2014 ) Joint laplacian diagonalization for multi-modal brain community detection. 2014 International Workshop on Pattern Recognition in Neuroimaging. Piscataway, NJ: IEEE. pp. 1 – 4.
dc.identifier.citedreferenceEichele, T., Calhoun, V.D., Moosmann, M., Specht, K., Jongsma, M.L., Quiroga, R.Q. et al. ( 2008 ) Unmixing concurrent eeg-fmri with parallel independent component analysis. International Journal of Psychophysiology, 67, 222 – 234.
dc.identifier.citedreferenceErhardt, E.B., Allen, E.A., Wei, Y., Eichele, T. & Calhoun, V.D. ( 2012 ) SIMTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. NeuroImage, 59, 4160 – 4167.
dc.identifier.citedreferenceFranco, A.R., Ling, J., Caprihan, A., Calhoun, V.D., Jung, R.E., Heileman, G.L. et al. ( 2008 ) Multimodal and multi-tissue measures of connectivity revealed by joint independent component analysis. IEEE Journal of Selected Topics in Signal Processing, 2, 986 – 997.
dc.identifier.citedreferenceGreenspan, H., Ruf, A. & Goldberger, J. ( 2006 ) Constrained gaussian mixture model framework for automatic segmentation of mr brain images. IEEE Transactions on Medical Imaging, 25, 1233 – 1245.
dc.identifier.citedreferenceGuo, Y. ( 2011 ) A general probabilistic model for group independent component analysis and its estimation methods. Biometrics, 67, 1532 – 1542.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.