Show simple item record

Single-Step Synthesis of Atropisomers with Vicinal C−C and C−N Diaxes by Cobalt-Catalyzed Atroposelective C−H Annulation

dc.contributor.authorWang, Bing-Jie
dc.contributor.authorXu, Guo-Xiong
dc.contributor.authorHuang, Zong-Wei
dc.contributor.authorWu, Xu
dc.contributor.authorHong, Xin
dc.contributor.authorYao, Qi-Jun
dc.contributor.authorShi, Bing-Feng
dc.date.accessioned2022-10-05T15:51:23Z
dc.date.available2023-10-05 11:51:19en
dc.date.available2022-10-05T15:51:23Z
dc.date.issued2022-09-26
dc.identifier.citationWang, Bing-Jie ; Xu, Guo-Xiong ; Huang, Zong-Wei ; Wu, Xu; Hong, Xin; Yao, Qi-Jun ; Shi, Bing-Feng (2022). "Single- Step Synthesis of Atropisomers with Vicinal C- C and C- N Diaxes by Cobalt- Catalyzed Atroposelective C- H Annulation." Angewandte Chemie International Edition 61(39): n/a-n/a.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/174912
dc.description.abstractThe atroposelective synthesis of atropisomers with vicinal diaxes remains rare and challenging, due to the steric influence between the two axes and their unique topology. Herein, we disclose a single-step construction of atropisomers with vicinal C−C and C−N chiral diaxes by cyclopentadiene (Cp)-free cobalt-catalyzed intramolecular atroposelective C−H annulation, providing the desired diaxial atropisomers of unique structures with decent stereocontrols of both axes (up to >99 % ee and 70 : 1 dr). The optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being candidate materials for potential CPL applications. Atropisomerization experiments and density function theory (DFT) calculations are conducted to study the rotational barriers and rotation pathways of the diaxes.A single-step construction of atropisomers with vicinal C−C and C−N chiral diaxes by cyclopentadiene (Cp)-free cobalt-catalyzed intramolecular atroposelective C−H annulation with decent stereocontrols (up to >99 % ee and 70/1 dr) was reported. Atropisomerization experiments and DFT calculations are done to study the rotational barriers and pathways of the diaxes.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAtroposelectivity
dc.subject.otherC−H Annulation
dc.subject.otherCobalt
dc.subject.otherSalicyloxazoline
dc.subject.otherVicinal Diaxis
dc.titleSingle-Step Synthesis of Atropisomers with Vicinal C−C and C−N Diaxes by Cobalt-Catalyzed Atroposelective C−H Annulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174912/1/anie202208912-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174912/2/anie202208912_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174912/3/anie202208912.pdf
dc.identifier.doi10.1002/anie.202208912
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceS. Prakash, R. Kuppusamy, C.-H. Cheng, ChemCatChem 2018, 10, 683 – 705;
dc.identifier.citedreferenceQ.-J. Yao, P.-P. Xie, Y.-J. Wu, Y.-L. Feng, M.-Y. Teng, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2020, 142, 18266 – 18276.
dc.identifier.citedreferenceV. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154 – 13155.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359, 1245 – 1262;
dc.identifier.citedreferenceJ. Park, S. Chang, Chem. Asian J. 2018, 13, 1089 – 1102;
dc.identifier.citedreferenceR. −H Mei, U. Dhawa, R. C. Samanta, W.-B. Ma, J. Wencel-Delord, L. Ackermann, ChemSusChem 2020, 13, 3306 – 3356.
dc.identifier.citedreferenceF. Pesciaioli, U. Dhawa, J. C. A. Oliveira, R. Yin, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 15425 – 15429; Angew. Chem. 2018, 130, 15651 – 15655;
dc.identifier.citedreferenceS. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 1153 – 1157; Angew. Chem. 2019, 131, 1165 – 1169;
dc.identifier.citedreferenceD. Sekine, K. Ikeda, S. Fukagawa, M. Kojima, T. Yoshino, S. Matsunaga, Organometallics 2019, 38, 3921 – 3926;
dc.identifier.citedreferenceY.-H. Liu, P.-X. Li, Q.-J. Yao, Z.-Z. Zhang, D.-Y. Huang, M.-D. Le, H. Song, L. Liu, B.-F. Shi, Org. Lett. 2019, 21, 1895 – 1899;
dc.identifier.citedreferenceY.-H. Liu, P.-P. Xie, L. Liu, J. Fan, Z.-Z. Zhang, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2021, 143, 19112 – 19120;
dc.identifier.citedreferenceW.-K. Yuan, B.-F. Shi, Angew. Chem. Int. Ed. 2021, 60, 23187 – 23192; Angew. Chem. 2021, 133, 23371 – 23376;
dc.identifier.citedreferenceK. Ozols, Y.-S. Jang, N. Cramer, J. Am. Chem. Soc. 2019, 141, 5675 – 5680;
dc.identifier.citedreferenceK. Ozols, S. Onodera, Ł. Woźniak, N. Cramer, Angew. Chem. Int. Ed. 2021, 60, 655 – 659; Angew. Chem. 2021, 133, 665 – 669;
dc.identifier.citedreferenceA. G. Herraiz, N. Cramer, ACS Catal. 2021, 11, 11938 – 11944.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2014, 53, 10209 – 10212; Angew. Chem. 2014, 126, 10373 – 10376;
dc.identifier.citedreferenceL. Grigorjeva, O. Daugulis, Org. Lett. 2014, 16, 4684 – 4687.
dc.identifier.citedreferenceDeposition Numbers  2132392, 2132394, 2132395, and 2132393 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. M. Sánchez-Carnerero, A. R. Agarrabeitia, F. Moreno, B. L. Maroto, G. Muller, M. J. Ortiz S de la Moya, Chem. Eur. J. 2015, 21, 13488 – 13500;
dc.identifier.citedreferenceM. Li, W.-B. Lin, L. Fang, C.-F. Chen, Acta Chim. Sin. (Engl. Ed.) 2017, 75, 1150 – 1163.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Ahmed, R. A. Bragg, J. Clayden, L. W. Lai, C. McCarthy, J. H. Pink, N. Westlund S A Yasin, Tetrahedron 1998, 54, 13277 – 13294;
dc.identifier.citedreferenceH. Iwamura, K. Mislow, Acc. Chem. Res. 1988, 21, 175 – 182.
dc.identifier.citedreferenceV. Belot, D. Farran, M. Jean, M. Albalat, N. Vanthuyne, C. Roussel, J. Org. Chem. 2017, 82, 10188 – 10200.
dc.identifier.citedreferenceC. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908 – 8976;
dc.identifier.citedreferenceT. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798;
dc.identifier.citedreferenceB. Ye, P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 507 – 511; Angew. Chem. 2014, 126, 517 – 521.
dc.identifier.citedreferenceI. Takahashi, Y. Suzuki, Org. Prep. Proced. Int. 2014, 46, 1 – 23;
dc.identifier.citedreferenceO. Kitagawa, Acc. Chem. Res. 2021, 54, 719 – 730;
dc.identifier.citedreferenceY.-J. Wu, G. Liao, B.-F. Shi, Green Synth. Catal. 2022, 3, 117 – 136.
dc.identifier.citedreferenceFor examples of Co III -catalyzed enantioselective C−H activation, see:
dc.identifier.citedreferenceQ.-J. Yao, J.-H. Chen, H. Song, F.-R. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202202892; Angew. Chem. 2022, 134, e202202892.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173 – 6214;
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803 – 12818; Angew. Chem. 2019, 131, 12934 – 12949;
dc.identifier.citedreferenceT. Yoshino, S. Satake, S. Matsunaga, Chem. Eur. J. 2020, 26, 7346 – 7357;
dc.identifier.citedreferenceT. Achar, S. Maiti, S. Jana, D. Maiti, ACS Catal. 2020, 10, 13748 – 13793;
dc.identifier.citedreferenceQ. Zhang, B.-F. Shi, Acc. Chem. Res. 2021, 54, 2750 – 2763.
dc.identifier.citedreference 
dc.identifier.citedreferenceC.-X. Liu, W.-W. Zhang, S.-Y. Yin, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2021, 143, 14025 – 14040;
dc.identifier.citedreferenceJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805 – 4902;
dc.identifier.citedreferenceJ. Wencel-Delord, F. Colobert, SynOpen 2020, 04, 107 – 115;
dc.identifier.citedreferenceG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514 – 8523;
dc.identifier.citedreferenceG. Shan, J. Flegel, H. Li, C. Merten, S. Ziegler, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2018, 57, 14250 – 14254; Angew. Chem. 2018, 130, 14446 – 14450.
dc.identifier.citedreferenceFor selected reviews, see:
dc.identifier.citedreferenceX. Bao, J. Rodriguez, D. Bonne, Angew. Chem. Int. Ed. 2020, 59, 12623 – 12634; Angew. Chem. 2020, 132, 12723 – 12734;
dc.identifier.citedreferenceT. A. Schmidt, C. Sparr, Acc. Chem. Res. 2021, 54, 2764 – 2774.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Jin, P. Zhang, Y. Li, X. Yu, B.-F. Shi, J. Am. Chem. Soc. 2021, 143, 12335 – 12344;
dc.identifier.citedreferenceG. Liao, T. Zhang, L. Jin, B.-J. Wang, C.-K. Xu, Y. Lan, Y. Zhao, B.-F. Shi, Angew. Chem. Int. Ed. 2022, 61, e202115221; Angew. Chem. 2022, 134, e202115221;
dc.identifier.citedreferenceZ.-S. Liu, P.-P. Xie, Y. Hua, C. Wu, Y. Ma, J. Chen, H.-G. Cheng, X. Hong, Q. Zhou, Chem 2021, 7, 1917 – 1932.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Shibata, K. Tsuchikama M Otsuka, Tetrahedron: Asymmetry 2006, 17, 614 – 619;
dc.identifier.citedreferenceK. T. Barrett, A. J. Metrano, P. R. Rablen, S. J. Miller, Nature 2014, 509, 71 – 75;
dc.identifier.citedreferenceD. Lotter, M. Neuburger, M. Rickhaus, D. Häussinger, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 2920 – 2923; Angew. Chem. 2016, 128, 2973 – 2976;
dc.identifier.citedreferenceD. Lotter, A. Castrogiovanni, M. Neuburger, C. Sparr, ACS Cent. Sci. 2018, 4, 656 – 660;
dc.identifier.citedreferenceY. Tan, S. Jia, F. Hu, Y. Liu, L. Peng, D. Li, H. Yan, J. Am. Chem. Soc. 2018, 140, 16893 – 16898;
dc.identifier.citedreferenceY.-L. Hu, Z. Wang, H. Yang, J. Chen, Z.-B. Wu, Y. Lei, L. Zhou, Chem. Sci. 2019, 10, 6777 – 6784.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Dherbassy, J.-P. Djukic, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018, 57, 4668 – 4672; Angew. Chem. 2018, 130, 4758 – 4762;
dc.identifier.citedreferenceQ. Dherbassy, J. Wencel-Delord, F. Colobert, Tetrahedron 2018, 74, 6205 – 6212.
dc.identifier.citedreferenceQ. Gao, C. Wu, S. Deng, L. Li, Z.-S. Liu, Y. Hua, J. Ye, C. Liu, H.-G. Cheng, H. Cong, Y. Jiao, Q. Zhou, J. Am. Chem. Soc. 2021, 143, 7253 – 7260.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ.-J. Yao, S. Zhang, B.-B. Zhan, B.-F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617 – 6621; Angew. Chem. 2017, 129, 6717 – 6721;
dc.identifier.citedreferenceG. Liao, Q.-J. Yao, Z.-Z. Zhang, Y.-J. Wu, D.-Y. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 3661 – 3665; Angew. Chem. 2018, 130, 3723 – 3727;
dc.identifier.citedreferenceJ. Luo, T. Zhang, L. Wang, G. Liao, Q.-J. Yao, Y.-J. Wu, B.-B. Zhan, Y. Lan, X.-F. Lin, B.-F. Shi, Angew. Chem. Int. Ed. 2019, 58, 6708 – 6712; Angew. Chem. 2019, 131, 6780 – 6784;
dc.identifier.citedreferenceL. Jin, Q.-J. Yao, P.-P. Xie, Y. Li, B.-B. Zhan, Y.-Q. Han, X. Hong, B.-F. Shi, Chem 2020, 6, 497 – 511;
dc.identifier.citedreferenceH. Song, Y. Li, Q.-J. Yao, L. Jin, L. Liu, Y.-H. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 6576 – 6580; Angew. Chem. 2020, 132, 6638 – 6642;
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.