Show simple item record

The future of MRI in radiation therapy: Challenges and opportunities for the MR community

dc.contributor.authorGoodburn, Rosie J.
dc.contributor.authorPhilippens, Marielle E. P.
dc.contributor.authorLefebvre, Thierry L.
dc.contributor.authorKhalifa, Aly
dc.contributor.authorBruijnen, Tom
dc.contributor.authorFreedman, Joshua N.
dc.contributor.authorWaddington, David E. J.
dc.contributor.authorYounus, Eyesha
dc.contributor.authorAliotta, Eric
dc.contributor.authorMeliadò, Gabriele
dc.contributor.authorStanescu, Teo
dc.contributor.authorBano, Wajiha
dc.contributor.authorFatemi-Ardekani, Ali
dc.contributor.authorWetscherek, Andreas
dc.contributor.authorOelfke, Uwe
dc.contributor.authorBerg, Nico
dc.contributor.authorMason, Ralph P.
dc.contributor.authorHoudt, Petra J.
dc.contributor.authorBalter, James M.
dc.contributor.authorGurney-Champion, Oliver J.
dc.date.accessioned2022-10-05T15:51:25Z
dc.date.available2024-01-05 11:51:24en
dc.date.available2022-10-05T15:51:25Z
dc.date.issued2022-12
dc.identifier.citationGoodburn, Rosie J.; Philippens, Marielle E. P.; Lefebvre, Thierry L.; Khalifa, Aly; Bruijnen, Tom; Freedman, Joshua N.; Waddington, David E. J.; Younus, Eyesha; Aliotta, Eric; Meliadò, Gabriele ; Stanescu, Teo; Bano, Wajiha; Fatemi-Ardekani, Ali ; Wetscherek, Andreas; Oelfke, Uwe; Berg, Nico; Mason, Ralph P.; Houdt, Petra J.; Balter, James M.; Gurney-Champion, Oliver J. (2022). "The future of MRI in radiation therapy: Challenges and opportunities for the MR community." Magnetic Resonance in Medicine 88(6): 2592-2608.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/174913
dc.description.abstractRadiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.
dc.publisherWiley Periodicals, Inc.
dc.publisherACM
dc.subject.otherMR
dc.subject.otherISMRM workshop
dc.subject.otherradiation therapy
dc.subject.otherfuture
dc.titleThe future of MRI in radiation therapy: Challenges and opportunities for the MR community
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174913/1/mrm29450_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174913/2/mrm29450.pdf
dc.identifier.doi10.1002/mrm.29450
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferencePanek R, Welsh L, Baker LCJ, et al. Noninvasive imaging of cycling hypoxia in head and neck cancer using intrinsic susceptibility MRI. Clin Cancer Res. 2017; 23: 4233 - 4241.
dc.identifier.citedreferenceCrijns SPM, Raaymakers BW, Lagendijk JJW. Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys Med Biol. 2011; 56: 289 - 297.
dc.identifier.citedreferenceMedicines and Healthcare Products Regulatory Agency (MHRA), Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use 2021.
dc.identifier.citedreferenceO’Reilly T, Webb A. Deconstructing and reconstructing MRI hardware. J Magn Reson. 2019; 306: 134 - 138.
dc.identifier.citedreferenceCampbell-Washburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med. 2016; 75: 2278 - 2285.
dc.identifier.citedreferenceKoonjoo N, Zhu B, Bagnall GC, Bhutto D, Rosen MS. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci Rep. 2021; 11: 8248.
dc.identifier.citedreferenceMutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014; 24: 196 - 199.
dc.identifier.citedreferenceRaaymakers BW, De Boer JCJ, Knox C, et al. Integrated megavoltage portal imaging with a 1.5 T MRI linac. Phys Med Biol. 2011; 56:N207-N214.
dc.identifier.citedreferenceTijssen RHN, Philippens MEP, Paulson ES, et al. MRI commissioning of 1.5T MR-linac systems – a multi-institutional study. Radiother Oncol. 2019; 132: 114 - 120.
dc.identifier.citedreferenceFallone BG, Murray B, Rathee S, et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys. 2009; 36: 2084 - 2088.
dc.identifier.citedreferenceKeall PJ, Barton M, Crozier S. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol. 2014; 24: 203 - 206.
dc.identifier.citedreferenceDayarian I, Chan TCY, Jaffray D, Stanescu T. A mixed-integer optimization approach for homogeneous magnet design. Technology. 2018; 06: 49 - 58.
dc.identifier.citedreferenceMoritz M, Redlich T, Günyar S, Winter L, Wulfsberg JP. On the economic value of open source hardware – case study of an open source magnetic resonance imaging scanner. J Open Hardware. 2019; 3:2.
dc.identifier.citedreferenceHoogcarspel SJ, Crijns SPM, Lagendijk JJW, Van Vulpen M, Raaymakers BW. The feasibility of using a conventional flexible RF coil for an online MR-guided radiotherapy treatment. Phys Med Biol. 2013; 58: 1925 - 1932.
dc.identifier.citedreferenceGhila A, Fallone BG, Rathee S. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field. Med Phys. 2016; 43: 5808 - 5816.
dc.identifier.citedreferenceZijlema SE, Tijssen RHN, Malkov VN, et al. Design and feasibility of a flexible, on-body, high impedance coil receive array for a 1.5 T MR-linac. Phys Med Biol. 2019; 64:185004.
dc.identifier.citedreferenceZijlema SE, Tijssen RHN, van Dijk L, et al. Improving the imaging performance of the 1.5 T MR-linac using a flexible, 32-channel, on-body receive array. Phys Med Biol. 2020; 65:215008.
dc.identifier.citedreferenceZhang B, Brown R, Cloos M, Lattanzi R, Sodickson D, Wiggins G. Size-adaptable “Trellis” structure for tailored MRI coil arrays. Magn Reson Med. 2019; 81: 3406 - 3415.
dc.identifier.citedreferenceCorea JR, Flynn AM, Lechêne B, et al. Screen-printed flexible MRI receive coils. Nat Commun. 2016; 7: 1 - 7.
dc.identifier.citedreferenceCollick BD, Behzadnezhad B, Hurley SA, et al. Rapid development of application-specific flexible MRI receive coils. Phys Med Biol. 2020; 65:19NT01.
dc.identifier.citedreferenceAlsadah A, van Merode T, Alshammari R, Kleijnen J. A systematic literature review looking for the definition of treatment burden. Heliyon. 2020; 6:e03641.
dc.identifier.citedreferenceEl-Turk N, Chou MSH, Ting NCH, et al. Treatment burden experienced by patients with lung cancer. PLOS One. 2021; 16: e0245492.
dc.identifier.citedreferencePerrier L, Morelle M, Pommier P, et al. Cost of prostate image-guided radiation therapy: results of a randomized trial. Radiother Oncol. 2013; 106: 50 - 58.
dc.identifier.citedreferenceTetar SU, Bruynzeel AME, Lagerwaard FJ, Slotman BJ, Bohoudi O, Palacios MA. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys Imaging Radiat Oncol. 2019; 9: 69 - 76.
dc.identifier.citedreferenceStanescu T, Shessel A, Carpino-Rocca C, et al. MRI-guided online adaptive stereotactic body radiation therapy of liver and pancreas tumors on an MR-linac system. Cancers. 2022; 14: 716.
dc.identifier.citedreferenceSayan M, Serbez I, Teymur B, et al. Patient-reported tolerance of magnetic resonance-guided radiation therapy. Front Oncol. 2020; 10:1782.
dc.identifier.citedreferenceBarnes H, Alexander S, Bower L, et al. Development and results of a patient-reported treatment experience questionnaire on a 1.5 T MR-Linac. Clin Transl Radiat Oncol. 2021; 30: 31 - 37.
dc.identifier.citedreferenceMeléndez JC, McCrank E. Anxiety-related reactions associated with magnetic resonance imaging examinations. JAMA. 1993; 270: 745.
dc.identifier.citedreferenceLiu PZY, Dong B, Nguyen DT, et al. First experimental investigation of simultaneously tracking two independently moving targets on an MRI-linac using real-time MRI and MLC tracking. Med Phys. 2020; 47: 6440 - 6449.
dc.identifier.citedreferenceZilli T, Scorsetti M, Zwahlen D, et al. ONE SHOT - single SHOT radiotherapy for localized prostate cancer: study protocol of a single arm, multicenter phase I/II trial. Radiat Oncol. 2018; 13: 166.
dc.identifier.citedreferenceCuccia F, Corradini S, Mazzola R, et al. MR-guided hypofractionated radiotherapy: current emerging data and promising perspectives for localized prostate cancer. Cancers. 2021; 13: 1791.
dc.identifier.citedreferenceHannan R, Tumati V, Xie X-J, et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer—results from a multi-institutional clinical trial. Eur J Cancer. 2016; 59: 142 - 151.
dc.identifier.citedreferenceVidetic GMM, Hu C, Singh AK, et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys. 2015; 93: 757 - 764.
dc.identifier.citedreferenceRahimi A, Thomas K, Spangler A, et al. Preliminary results of a phase 1 dose-escalation trial for early-stage breast cancer using 5-fraction stereotactic body radiation therapy for partial-breast irradiation. Int J Radiat Oncol Biol Phys. 2017; 98: 196 - 205.e2.
dc.identifier.citedreferenceLievens Y, Defourny N, Coffey M, et al. Radiotherapy staffing in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014; 112: 178 - 186.
dc.identifier.citedreferenceBellometti S, Nube G, Alongi F, et al. Radiotherapy activities and technological equipment in Veneto, Italy: a report from the rete Radioterapica Veneta. Radiol Med. 2021; 126: 623 - 629.
dc.identifier.citedreferenceKorreman S, Eriksen JG, Grau C. The changing role of radiation oncology professionals in a world of AI – just jobs lost – or a solution to the under-provision of radiotherapy? Clin Transl Radiat Oncol. 2021; 26: 104 - 107.
dc.identifier.citedreferenceMcIntosh C, Conroy L, Tjong MC, et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat Med. 2021; 27: 999 - 1005.
dc.identifier.citedreferenceWillmann J, Poortmans P, Monti AF, et al. Development of staffing, workload and infrastructure in member departments of the European Organisation for research and treatment of cancer (EORTC) radiation oncology group. Radiother Oncol. 2021; 155: 226 - 231.
dc.identifier.citedreferenceLievens Y, Borras JM, Grau C. Provision and use of radiotherapy in Europe. Mol Oncol. 2020; 14: 1461 - 1469.
dc.identifier.citedreferenceZubizarreta E, van Dyk J, Lievens Y. Analysis of global radiotherapy needs and costs by geographic region and income level. Clin Oncol. 2017; 29: 84 - 92.
dc.identifier.citedreferenceTeoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011; 84: 967 - 996.
dc.identifier.citedreferenceBurman C, Chui C-S, Kutcher G, et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1997; 39: 863 - 873.
dc.identifier.citedreferenceDawson LA, Ménard C. Imaging in radiation oncology: a perspective. Oncologist. 2010; 15: 338 - 349.
dc.identifier.citedreferenceCho PS, Johnson RH, Griffin TW. Cone-beam CT for radiotherapy applications. Phys Med Biol. 1995; 40: 1863 - 1883.
dc.identifier.citedreferenceNijkamp J, Pos FJ, Nuver TT, et al. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys. 2008; 70: 75 - 82.
dc.identifier.citedreferenceMali SB. Adaptive radiotherapy for head neck cancer. J Maxillofac Oral Surg. 2016; 15: 549 - 554.
dc.identifier.citedreferenceMorgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck. 2020; 5: 1 - 16.
dc.identifier.citedreferenceGurney-Champion OJ, Versteijne E, van der Horst A, et al. Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study. Acta Oncol. 2017; 56: 923 - 930.
dc.identifier.citedreferenceGrégoire V, Guckenberger M, Haustermans K, et al. Image guidance in radiation therapy for better cure of cancer. Mol Oncol. 2020; 14: 1470 - 1491.
dc.identifier.citedreferenceGlide-Hurst CK, Paulson ES, McGee K, et al. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance. Med Phys. 2021; 48: e636 - e670.
dc.identifier.citedreferenceRasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque J. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999; 43: 57 - 66.
dc.identifier.citedreferenceRasch C, Keus R, Pameijer FA, et al. The potential impact of CT-MRI matching on tumor volume delineation in advanced head and neck cancer. Int J Radiat Oncol Biol Phys. 1997; 39: 841 - 848.
dc.identifier.citedreferencevan der Heide UA, Houweling AC, Groenendaal G, Beets-Tan RGH, Lambin P. Functional MRI for radiotherapy dose painting. Magn Reson Imaging. 2012; 30: 1216 - 1223.
dc.identifier.citedreferenceLagendijk JJW, Raaymakers BW, Raaijmakers AJE, et al. MRI/linac integration. Radiother Oncol. 2008; 86: 25 - 29.
dc.identifier.citedreferenceChandarana H, Wang H, Tijssen R, Das IJ. Emerging role of MRI in radiation therapy. J Magn Reson Imaging. 2018; 48: 1468 - 1478.
dc.identifier.citedreferenceKoste JR, van S d, Palacios MA, et al. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys. 2018; 102: 858 - 866.
dc.identifier.citedreferenceUgurluer G, Mustafayev TZ, Gungor G, et al. Stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic patients: initial clinical experience. Radiat Oncol J. 2021; 39: 33 - 40.
dc.identifier.citedreferenceO’Connor JPB, Robinson SP, Waterton JC. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol. 2019; 92: 20180642.
dc.identifier.citedreferenceWong KH, Panek R, Dunlop A, et al. Changes in multimodality functional imaging parameters early during chemoradiation predict treatment response in patients with locally advanced head and neck cancer. Eur J Nucl Med Mol Imaging. 2018; 45: 759 - 767.
dc.identifier.citedreferenceKooreman ES, van Houdt PJ, Nowee ME, et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol. 2019; 133: 156 - 162.
dc.identifier.citedreferenceHuynh E, Hosny A, Guthier C, et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020; 17: 771 - 781.
dc.identifier.citedreferenceCohen JP, Cao T, Viviano JD, et al. Problems in the deployment of machine-learned models in health care. Can Med Assoc J. 2021; 193: E1391 - E1394.
dc.identifier.citedreferenceOakden-Rayner L, Dunnmon J, Carneiro G, Re C. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. Proceedings of the ACM Conference on Health, Inference, and Learning. ACM; 2020: 151 - 159.
dc.identifier.citedreferenceStroom JC, Heijmen BJM. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol. 2002; 64: 75 - 83.
dc.identifier.citedreferenceBurnet NG, Thomas SJ, Burton KE, Jefferies SJ. Defining the tumour and target volumes for radiotherapy. Cancer Imaging. 2004; 4: 153 - 161.
dc.identifier.citedreferenceLin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology. 2019; 291: 677 - 686.
dc.identifier.citedreferenceMcCarroll RE, Beadle BM, Balter PA, et al. Retrospective validation and clinical implementation of automated contouring of organs at risk in the head and neck: a step toward automated radiation treatment planning for low- and middle-income countries. J Global Oncol. 2018;4: 1 - 11.
dc.identifier.citedreferenceVinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother Oncol. 2016; 121: 169 - 179.
dc.identifier.citedreferenceHuq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016; 43: 4209 - 4262.
dc.identifier.citedreferenceSharp G, Fritscher KD, Pekar V, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys. 2014; 41:05092.
dc.identifier.citedreferenceOktay O, Nanavati J, Schwaighofer A, et al. Evaluation of deep learning to augment image-guided radiotherapy for head and neck and prostate cancers. JAMA Netw Open. 2020; 3: e2027426.
dc.identifier.citedreferenceCha E, Elguindi S, Onochie I, et al. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy. Radiother Oncol. 2021; 159: 1 - 7.
dc.identifier.citedreferenceLin M, Momin S, Lei Y, et al. Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised U-net. Med Phys. 2021; 48: 4365 - 4374.
dc.identifier.citedreferenceRodríguez Outeiral R, Bos P, Al-Mamgani A, Jasperse B, Simões R, van der Heide UA. Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning. Phys Imaging Radiat Oncol. 2021; 19: 39 - 44.
dc.identifier.citedreferenceLi J, Chen H, Li Y, Peng Y. A novel network based on densely connected fully convolutional networks for segmentation of lung tumors on multi-modal MR images. Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing - AIAM 2019. ACM Press; 2019: 1 - 5.
dc.identifier.citedreferenceTrebeschi S, van Griethuysen JJM, Lambregts DMJ, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017; 7: 1 - 9.
dc.identifier.citedreferenceLustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018; 126: 312 - 317.
dc.identifier.citedreferenceLiu Z, Liu X, Xiao B, et al. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Phys Med. 2020; 69: 184 - 191.
dc.identifier.citedreferenceKieselmann JP, Fuller CD, Gurney-Champion OJ, Oelfke U. Cross-modality deep learning: contouring of MRI data from annotated CT data only. Med Phys. 2021; 48: 1673 - 1684.
dc.identifier.citedreferenceGurney-Champion OJ, Kieselmann J, Wong K, Harrington K, Oelfke U. Rapid and accurate automatic contouring of quantitative diffusion-weighted MRI using a deep convolutional neural network. In: 7th MR in RT Symposium 2019.
dc.identifier.citedreferenceMir R, Kelly SM, Xiao Y, et al. Organ at risk delineation for radiation therapy clinical trials: global harmonization group consensus guidelines: GHG OAR consensus contouring guidance. Radiother Oncol. 2020; 150: 30 - 39.
dc.identifier.citedreferenceJiang J, Hu YC, Tyagi N, et al. Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2018;11071 LNCS: 777 – 785.
dc.identifier.citedreferenceCai J, Zhang Z, Cui L, Zheng Y, Yang L. Towards cross-modal organ translation and segmentation: a cycle- and shape-consistent generative adversarial network. Med Image Anal. 2019; 52: 174 - 184.
dc.identifier.citedreferenceYu B, Zhou L, Wang L, Fripp J, Bourgeat P. 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018: 626 – 630.
dc.identifier.citedreferenceMeyer MI, de la Rosa E, Barros N, Paolella R, van Leemput K, Sima DM. An augmentation strategy to mimic multi-scanner variability in MRI. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE; 2021. pp. 1196 – 1200.
dc.identifier.citedreferenceBillot B, Greve D, van Leemput K, Fischl B, Iglesias JE, Dalca A A Learning Strategy for Contrast-agnostic MRI Segmentation. arXiv preprint arXiv:2003.01995 2020.
dc.identifier.citedreferenceRieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020; 3: 1 - 7.
dc.identifier.citedreferenceNourzadeh H, Hui C, Ahmad M, et al. Knowledge-based quality control of organ delineations in radiation therapy. Med Phys. 2022; 49: 1368 - 1381.
dc.identifier.citedreferenceZhao G, Liu F, Oler JA, Meyerand ME, Kalin NH, Birn RM. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates. Neuroimage. 2018; 175: 32 - 44.
dc.identifier.citedreferenceKendall A, Badrinarayanan V, Cipolla R. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: British Machine Vision Conference 2017, BMVC 2017. BMVA Press; 2017.
dc.identifier.citedreferenceKruser TJ, Bosch WR, Badiyan SN, et al. NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol. 2019; 143: 157 - 166.
dc.identifier.citedreferenceTilly D, Holm Å, Grusell E, Ahnesjö A. Probabilistic optimization of dose coverage in radiotherapy. Phys Imaging Radiat Oncol. 2019; 10: 1 - 6.
dc.identifier.citedreferenceVoet PWJ, Dirkx MLP, Teguh DN, Hoogeman MS, Levendag PC, Heijmen BJM. Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis. Radiother Oncol. 2011; 98: 373 - 377.
dc.identifier.citedreferencevan Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR, Slotman BJ, Verbakel WF. Deep learning-based delineation of head and neck organs at risk: geometric and dosimetric evaluation. Int J Radiat Oncol Biol Phys. 2019; 104: 677 - 684.
dc.identifier.citedreferenceKieselmann JP, Kamerling CP, Burgos N, et al. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Phys Med Biol. 2018; 63: 145007.
dc.identifier.citedreferenceEldesoky AR, Francolini G, Thomsen MS, et al. Dosimetric assessment of an atlas based automated segmentation for loco-regional radiation therapy of early breast cancer in the Skagen trial 1: a multi-institutional study. Clin Transl Radiat Oncol. 2017; 2: 36.
dc.identifier.citedreferenceLigtenberg H, Jager EA, Caldas-Magalhaes J, et al. Modality-specific target definition for laryngeal and hypopharyngeal cancer on FDG-PET, CT and MRI. Radiother Oncol. 2017; 123: 63 - 70.
dc.identifier.citedreferenceKerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, van den Berg CAT. Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol. 2018; 30: 692 - 701.
dc.identifier.citedreferencePersson E, Emin S, Scherman J, et al. Investigation of the clinical inter-observer bias in prostate fiducial marker image registration between CT and MR images. Radiat Oncol. 2021; 16: 150.
dc.identifier.citedreferenceChen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017; 25: 245 - 255.
dc.identifier.citedreferenceSpadea MF, Maspero M, Zaffino P, Seco J. Deep learning based synthetic-CT generation in radiotherapy and PET: a review. Med Phys. 2021; 48: 6537 - 6566.
dc.identifier.citedreferenceJohnstone E, Wyatt JJ, Henry AM, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging–only radiation therapy. Int J Radiat Oncol Biol Phys. 2018; 100: 199 - 217.
dc.identifier.citedreferenceTyagi N, Fontenla S, Zelefsky M, et al. Clinical workflow for MR-only simulation and planning in prostate. Radiat Oncol. 2017; 12: 1 - 12.
dc.identifier.citedreferencePhilips. Unleash the real power of MR simulation: MRCAT Brain. https://www.documents.philips.com/assets/20200706/90a01c146c864ad183c1abf000c82c3d.pdf?_gl=1*1093euc*_ga*MzIwNzM5Nzg3LjE2Mjg1NTAxODc.*_ga_2NMXNNS6LE*MTYyODg4NjE4My4yLjAuMTYyODg4NjIxNS4yOA.&_ga=2.195699172.99280882.1628886184-320739787.1628550187. Published 2020. Accessed August 25, 2021.
dc.identifier.citedreferenceSiemens. MR-only RT planning for the brain and pelvis with synthetic CT (white paper). https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000006768945/1ed4126c4f76/Whitepaper-MR-only-RT-planning-for-the-brain-and-pelvis-with-synthetic.CT_1800000006768945.pdf. Published 2019. Accessed August 25, 2021.
dc.identifier.citedreferenceLerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol. 2021; 16: 66.
dc.identifier.citedreferenceLei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys. 2019; 46: 3565 - 3581.
dc.identifier.citedreferencePeng Y, Chen S, Qin A, et al. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Radiother Oncol. 2020; 150: 217 - 224.
dc.identifier.citedreferenceEmami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. 2018; 45: 3627 - 3636.
dc.identifier.citedreferenceGholamiankhah F, Mostafapour S, Arabi H. Deep learning-based synthetic CT generation from MR images: comparison of generative adversarial and residual neural networks. Int J Radiat Res. 2022; 20: 121 - 130.
dc.identifier.citedreferenceSchmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015; 60: R323 - R361.
dc.identifier.citedreferenceFreedman JN, Bainbridge HE, Nill S, et al. Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems. Phys Med Biol. 2019; 64: 115005.
dc.identifier.citedreferenceLundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Fur Medizinische Physik. 2019; 29: 102 - 127.
dc.identifier.citedreferenceHunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive radiotherapy enabled by MRI guidance. Clin Oncol. 2018; 30: 711 - 719.
dc.identifier.citedreferenceMolitoris JK, Diwanji T, Snider JW, et al. Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis. 2018; 10: S2437 - S2450.
dc.identifier.citedreferenceCorradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019; 14: 92.
dc.identifier.citedreferenceStemkens B, Tijssen RHN, de Senneville BD, Lagendijk JJW, van den Berg CAT. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Phys Med Biol. 2016; 61: 5335 - 5355.
dc.identifier.citedreferenceKeall PJ, Sawant A, Berbeco RI, et al. AAPM task group 264: the safe clinical implementation of MLC tracking in radiotherapy. Med Phys. 2021; 48: e44 - e64.
dc.identifier.citedreferenceBorman PTS, Tijssen RHN, Bos C, Moonen CTW, Raaymakers BW, Glitzner M. Characterization of imaging latency for real-time MRI-guided radiotherapy. Phys Med Biol. 2018; 63: 155023.
dc.identifier.citedreferenceGlitzner M, Woodhead PL, Borman PTS, Lagendijk JJW, Raaymakers BW. Technical note: MLC-tracking performance on the Elekta Unity MRI-linac. Phys Med Biol. 2019; 64: 15NT02.
dc.identifier.citedreferenceFast M, van de Schoot A, van de Lindt T, Carbaat C, van der Heide U, Sonke JJ. Tumor trailing for liver SBRT on the MR-linac. Int J Radiat Oncol Biol Phys. 2019; 103: 468 - 478.
dc.identifier.citedreferenceDietz B, Yip E, Yun J, Fallone BG, Wachowicz K. Real-time dynamic MR image reconstruction using compressed sensing and principal component analysis (CS-PCA): demonstration in lung tumor tracking: demonstration. Med Phys. 2017; 44: 3978 - 3989.
dc.identifier.citedreferenceRudra S, Jiang N, Rosenberg SA, et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019; 8: 2123 - 2132.
dc.identifier.citedreferenceHassanzadeh C, Rudra S, Bommireddy A, et al. Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation. Adv Radiat Oncol. 2021; 6: 100506.
dc.identifier.citedreferenceGreen M, van Nest SJ, Soisson E, et al. Three discipline collaborative radiation therapy (3DCRT) special debate: we should treat all cancer patients with hypofractionation. J Appl Clin Med Phys. 2020; 21: 7 - 14.
dc.identifier.citedreferenceStemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol. 2018; 63: 21TR01.
dc.identifier.citedreferenceFreedman JN, Collins DJ, Gurney-Champion OJ, et al. Super-resolution T2-weighted 4D MRI for image guided radiotherapy. Radiother Oncol. 2018; 129: 486 - 493.
dc.identifier.citedreferenceTran EH, Eiben B, Wetscherek A, et al. Evaluation of MRI-derived surrogate signals to model respiratory motion. Biomed Phys Eng Express. 2020; 6: 045015.
dc.identifier.citedreferenceFeng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2016; 75: 775 - 788.
dc.identifier.citedreferenceJohansson A, Balter JM, Cao Y. Gastrointestinal 4D MRI with respiratory motion correction. Med Phys. 2021; 48: 2521 - 2527.
dc.identifier.citedreferenceKovacs B, Mayinger M, Tanadini-Lang S, et al. First two MRI guided stereotactic body radiation therapy of recurrent sustained ventricular tachycardia. Eur Heart J. 2020; 41:ehaa946.0758.
dc.identifier.citedreferenceKeall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM task group 76a. Med Phys. 2006; 33: 3874 - 3900.
dc.identifier.citedreferenceOtazo R, Lambin P, Pignol J-P, et al. MRI-guided radiation therapy: An emerging paradigm in adaptive radiation oncology. Radiology. 2021; 298: 248 - 260.
dc.identifier.citedreferenceMcClelland JR, Hawkes DJ, Schaeffter T, King AP. Respiratory motion models: a review. Med Image Anal. 2013; 17: 19 - 42.
dc.identifier.citedreferenceZhang Y, Kashani R, Cao Y, et al. A hierarchical model of abdominal configuration changes extracted from golden angle radial magnetic resonance imaging. Phys Med Biol. 2021; 66: 045018.
dc.identifier.citedreferenceMickevicius NJ, Paulson ES. On the use of low-dimensional temporal subspace constraints to reduce reconstruction time and improve image quality of accelerated 4D-MRI. Radiother Oncol. 2021; 158: 215 - 223.
dc.identifier.citedreferenceFreedman JN, Gurney-Champion OJ, Nill S, et al. Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula. Radiother Oncol. 2021; 159: 209 - 217.
dc.identifier.citedreferenceWaddington DEJ, Hindley N, Koonjoo N, et al. On real-time image reconstruction with neural networks for MRI-guided radiotherapy. arXiv preprint arXiv:2202.05267 2022.
dc.identifier.citedreferenceTerpstra ML, Maspero M, D’Agata F, et al. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Phys Med Biol. 2020; 65: 155015.
dc.identifier.citedreferenceHyun CM, Kim HP, Lee SM, Lee S, Seo JK. Deep learning for undersampled MRI reconstruction. Phys Med Biol. 2018; 63: 135007.
dc.identifier.citedreferencevan Houdt PJ, Yang Y, van der Heide UA. Quantitative magnetic resonance imaging for biological image-guided adaptive radiotherapy. Front Oncol. 2021; 10:615643.
dc.identifier.citedreferenceThompson SM, Gorny KR, Koepsel EMK, et al. Body interventional MRI for diagnostic and interventional radiologists: current practice and future prospects. Radiographics. 2021; 41: 1785 - 1801.
dc.identifier.citedreferenceHoffmann A, Oborn B, Moteabbed M, et al. MR-guided proton therapy: a review and a preview. Radiat Oncol. 2020; 15: 1 - 13.
dc.identifier.citedreferenceGurney-Champion OJ, Mahmood F, van Schie M, et al. Quantitative imaging for radiotherapy purposes. Radiother Oncol. 2020; 146: 66 - 75.
dc.identifier.citedreferenceDas IJ, McGee KP, Tyagi N, Wang H. Role and future of MRI in radiation oncology. Br J Radiol. 2019; 92: 20180505.
dc.identifier.citedreferenceArai TJ, Yang DM, Campbell JW, et al. Oxygen-sensitive MRI: A predictive imaging biomarker for tumor radiation response? Int J Radiat Oncol Biol Phys. 2021; 110: 1519 - 1529.
dc.identifier.citedreferenceDatta A, Aznar MC, Dubec M, Parker GJM, O’Connor JPB. Delivering functional imaging on the MRI-linac: current challenges and potential solutions. Clin Oncol. 2018; 30: 702 - 710.
dc.identifier.citedreferenceTatum JL. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006; 82: 699 - 757.
dc.identifier.citedreferencePaech D, Nagel AM, Schultheiss MN, et al. Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma. Radiology. 2020; 295: 181 - 189.
dc.identifier.citedreferenceScott JG, Sedor G, Ellsworth P, et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol. 2021; 22: 1221 - 1229.
dc.identifier.citedreferenceTomaszewski MR, Latifi K, Boyer E, et al. Delta radiomics analysis of magnetic resonance guided radiotherapy imaging data can enable treatment response prediction in pancreatic cancer. Radiat Oncol. 2021; 16: 237.
dc.identifier.citedreferenceTahir BA, Hughes PJC, Robinson SD, et al. Spatial comparison of CT-based surrogates of lung ventilation with hyperpolarized helium-3 and xenon-129 gas MRI in patients undergoing radiation therapy. Int J Radiat Oncol Biol Phys. 2018; 102: 1276 - 1286.
dc.identifier.citedreferenceIreland RH, Tahir BA, Wild JM, Lee CE, Hatton MQ. Functional image-guided radiotherapy planning for normal lung avoidance. Clin Oncol. 2016; 28: 695 - 707.
dc.identifier.citedreferenceIreland RH, Din OS, Swinscoe JA, et al. Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiother Oncol. 2010; 97: 244 - 248.
dc.identifier.citedreferenceIreland RH, Bragg CM, McJury M, et al. Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007; 68: 273 - 281.
dc.identifier.citedreferenceO’Connor JPB, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017; 14: 169 - 186.
dc.identifier.citedreferencevan Houdt PJ, Saeed H, Thorwarth D, et al. Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: conceptual guidance for multicentre studies from the MR-Linac consortium imaging biomarker working group. Eur J Cancer. 2021; 153: 64 - 71.
dc.identifier.citedreferenceVerkooijen HM, Kerkmeijer LGW, Fuller CD, et al. R-IDEAL: a framework for systematic clinical evaluation of technical innovations in radiation oncology. Front Oncol. 2017; 7: 59.
dc.identifier.citedreferenceMierzwa ML, Gharzai LA, Li P, et al. Early MRI blood volume changes in constrictor muscles correlate with postradiation dysphagia. Int J Radiat Oncol Biol Phys. 2021; 110: 566 - 573.
dc.identifier.citedreferenceKeenan KE, Biller JR, Delfino JG, et al. Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs. J Magn Reson Imaging. 2019; 49: e26 - e39.
dc.identifier.citedreferenceYankeelov T. The quantitative imaging network: a decade of achievement. Tomography. 2019; 5: A8.
dc.identifier.citedreferenceShukla-Dave A, Obuchowski NA, Chenevert TL, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019; 49: e101 - e121.
dc.identifier.citedreferenceKlüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019; 18: 98 - 101.
dc.identifier.citedreferenceLagendijk JJW, van Vulpen M, Raaymakers BW. The development of the MRI linac system for online MRI-guided radiotherapy: a clinical update. J Intern Med. 2016; 280: 203 - 208.
dc.identifier.citedreferenceWiedenmann N, Grosu A-L, Büchert M, et al. The utility of multiparametric MRI to characterize hypoxic tumor subvolumes in comparison to FMISO PET/CT. Consequences for diagnosis and chemoradiation treatment planning in head and neck cancer. Radiother Oncol. 2020; 150: 128 - 135.
dc.identifier.citedreferenceHompland T, kon Hole KH, Ragnum HB, et al. Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Cancer Res. 2018; 78: 4774 - 4785.
dc.identifier.citedreferenceHillestad T, Hompland T, Fjeldbo CS, et al. MRI distinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer. Cancer Res. 2020; 80: 3993 - 4003.
dc.identifier.citedreferenceHarris RJ, Cloughesy TF, Liau LM, et al. PH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 2015; 17: 1514 - 1524.
dc.identifier.citedreferenceSaxena K, Jolly MK. Acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 2019; 9: 339.
dc.identifier.citedreferenceMuthana M, Kennerley AJ, Hughes R, et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun. 2015; 6: 8009.
dc.identifier.citedreferenceGraham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018; 13: 6049.
dc.identifier.citedreferenceMaraghechi B, Gach HM, Setianegara J, Yang D, Li HH. Dose uncertainty and resolution of polymer gel dosimetry using an MRI guided radiation therapy system’s onboard 0.35 T scanner. Phys Med. 2020; 73: 8 - 12.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495: 187 - 192.
dc.identifier.citedreferenceFessler J. Model-based image reconstruction for MRI. IEEE Signal Process Mag. 2010; 27: 81 - 89.
dc.identifier.citedreferencevan der Heide O, Sbrizzi A, van den Berg CAT. Accelerated MR-STAT reconstructions using sparse hessian approximations. IEEE Trans Med Imaging. 2020; 39: 3737 - 3748.
dc.identifier.citedreferenceLiu F, Feng L, Kijowski R. MANTIS: model-augmented neural neTwork with incoherent k-space sampling for efficient MR parameter mapping. Magn Reson Med. 2019; 82: 174 - 188.
dc.identifier.citedreferenceLønning K, Putzky P, Sonke JJ, Reneman L, Caan MWA, Welling M. Recurrent inference machines for reconstructing heterogeneous MRI data. Med Image Anal. 2019; 53: 64 - 78.
dc.identifier.citedreferenceBarbieri S, Gurney-Champion OJ, Klaassen R, Thoeny HC. Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magn Reson Med. 2020; 83: 312 - 321.
dc.identifier.citedreferenceUlas C, Tetteh G, Thrippleton MJ, et al. Direct estimation of pharmacokinetic parameters from DCE-MRI using deep CNN with forward physical model loss. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2018;11070 LNCS: 39 – 47.
dc.identifier.citedreferenceKaandorp MPT, Barbieri S, Klaassen R, et al. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn Reson Med. 2021; 86: 2250 - 2265.
dc.identifier.citedreferenceGeethanath S, Baek H-M, Ganji SK, et al. Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology. 2012; 262: 985 - 994.
dc.identifier.citedreferenceSpeight R, Dubec M, Eccles CL, et al. IPEM topical report: guidance on the use of MRI for external beam radiotherapy treatment planning. Phys Med Biol. 2021; 66: 055025.
dc.identifier.citedreferenceShan S, Liney GP, Tang F, et al. Geometric distortion characterization and correction for the 1.0 T Australian MRI-linac system using an inverse electromagnetic method. Med Phys. 2020; 47: 1126 - 1138.
dc.identifier.citedreferenceWalker A, Liney G, Metcalfe P, Holloway L. MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med. 2014; 37: 103 - 113.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.