Show simple item record

A mobile-organic biofilm process for wastewater treatment

dc.contributor.authorBoltz, Joshua P.
dc.contributor.authorDaigger, Glen T.
dc.date.accessioned2022-10-05T15:51:28Z
dc.date.available2023-10-05 11:51:27en
dc.date.available2022-10-05T15:51:28Z
dc.date.issued2022-09
dc.identifier.citationBoltz, Joshua P.; Daigger, Glen T. (2022). "A mobile-organic biofilm process for wastewater treatment." Water Environment Research 94(9): n/a-n/a.
dc.identifier.issn1061-4303
dc.identifier.issn1554-7531
dc.identifier.urihttps://hdl.handle.net/2027.42/174915
dc.description.abstractThe mobile-organic biofilm (MOB) process includes mobile biofilms and their retention screens with a bioreactor and liquid and solid separation. The MOB process is inexpensive and easy to integrate with wastewater treatment (WWT) processes, and it provides for high-rate WWT in biofilm or hybrid bioreactors. This paper describes three modes of MOB process operation. The first mode of operation, Mode I, has a mobile-biofilm reactor and a mobile-biofilm retention screen that is downstream of and external to a bioreactor and upstream of liquid and solid separation. Modes II and III have a hybrid (i.e., mobile biofilms and accumulated suspended biomass) bioreactor and liquid and solid separation. Mode II includes a mobile-biofilm retention screen that is downstream of and external to a hybrid bioreactor and upstream of liquid and solid separation. Mode III includes mobile-biofilm retention screening that is external to a hybrid bioreactor and liquid and solid separation, receives waste solids, and relies on environmental conditions and wastewater characteristics that are favorable for aerobic-granular sludge formation. This paper presents a mechanistic approach to design and evaluate MOB processes and describes MOB process: (1) modes of operation, (2) design and analysis methodology, (3) process and mechanical design criteria, (4) mathematical modeling, (5) design equations, and (6) mobile-biofilm settling characteristics and return. A mathematical model was applied to describe a fixed bioreactor volume and secondary-clarifier area with Modes I, II, and III. The mathematical modeling identified key differences between MOB process modes of operation, which are described in this paper.Practitioner PointsMOB is a municipal and industrial wastewater treatment (WWT) process that reduces bioreactor and liquid and solids separation process volumes. It may operate with a mobile-biofilm reactor or a hybrid (mobile biofilms and suspended biomass) bioreactor.This paper provides a mechanistic basis for the selection and design of a MOB process mode of operation, and it describes MOB process modes of operation, design criteria, design equations, mathematical modeling, and mobile-biofilm settling characteristics.MOB integrated WWT plants exist at full scale and reliably meet their treatment objectives. The MOB process is an emerging environmental biotechnology for cost-effective WWT.The mobile-organic biofilm (MOB) process includes mobile biofilms and retention screens with a bioreactor and liquid and solid separation. This paper describes MOB process modes of operation, design and analysis methods, design criteria, mathematical modeling, design equations, and mobile-biofilm settling characteristics.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press and IWA Publishing
dc.subject.otherintensification
dc.subject.otherhybrid bioreactor
dc.subject.othermobile biofilm
dc.subject.othermodel
dc.subject.otherwastewater treatment
dc.titleA mobile-organic biofilm process for wastewater treatment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174915/1/wer10792_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174915/2/wer10792.pdf
dc.identifier.doi10.1002/wer.10792
dc.identifier.sourceWater Environment Research
dc.identifier.citedreferenceTokiwa, Y., & Calabia, B. P. ( 2004 ). Degradation of microbial polyesters. Biotechnology Letters, 26, 1181 – 1189.
dc.identifier.citedreferenceBoltz, J. P., Johnson, B. R., Daigger, G. T., & Sandino, J. ( 2009 ). Modeling integrated fixed film activated sludge and moving bed biofilm reactor systems I: Mathematical treatment and model development. Water Environment Research, 81, 555 – 575.
dc.identifier.citedreferenceBoltz, J. P., Johnson, B. R., Takács, I., Daigger, G. T., Morgenroth, E., Brockmann, D., Kovács, R., Calhoun, J. M., Choubert, J. M., & Derlon, N. ( 2017 ). Biofilm carrier migration model describes reactor performance. Water Science and Technology, 75 ( 12 ), 2818 – 2828.
dc.identifier.citedreferenceBoltz, J. P., & La Motta, E. J. ( 2007 ). Kinetics of particulate organic matter removal as a response to bioflocculation in aerobic biofilm reactors. Water Environment Research, 79 ( 7 ), 725 – 735.
dc.identifier.citedreferenceDaigger, G. T., Adams, C. D., & Steller, A. K. ( 2007 ). Diffusion of oxygen through activated sludge flocs: Experimental measurement, modeling, and implications for simultaneous nitrification and denitrification. Water Environment Research, 79, 375 – 387.
dc.identifier.citedreferencede Kreuk, M. K., & van Loosdrecht, M. C. M. ( 2004 ). Selection of slow growing organisms as a means of improving aerobic granular sludge stability. Water Science and Technology, 49 ( 11-12 ), 9 – 17.
dc.identifier.citedreferenceGrady, C. P. L. Jr., Daigger, G. T., Love, N. G., & Filipe, C. D. M. ( 2011 ). Biological wastewater treatment ( 3rd ed. ). CRC Press and IWA Publishing.
dc.identifier.citedreferenceJenkins, D., Richard, M. G., & Daigger, G. T. ( 2003 ). Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems ( 3rd ed. ). CRC Press.
dc.identifier.citedreferenceLa Motta, E. J., Jiménez, J. A., Josse, J. C., & Manrique, A. ( 2003 ). The effect of air induced velocity gradient and dissolved oxygen on bioflocculation in the trickling filter solids contact process. Advances in Environmental Research, 7, 441 – 451.
dc.identifier.citedreferenceMcQuarrie, J. P., & Boltz, J. P. ( 2011 ). Moving bed biofilm reactor technology Process applications, design, and performance. Water Environment Research, 83 ( 6 ), 560 – 575.
dc.identifier.citedreferenceMelcer, H., Dold, P. A., Jones, R. M., Bye, C. M., Takacs, I., Stensel, H. D., Wilson, A. W., Sun, P., & Bury, S. ( 2003 ). Methods for wastewater characterization in activated sludge modeling 99 WWF 3. Water Environment Research Foundation.
dc.identifier.citedreferenceNorris, D. P., Parker, D. S., Daniels, M. L., & Owens, E. L. ( 1982 ). Production of high quality trickling filter effluent without tertiary filtration. Journal of the Water Pollution Control Federation, 54, 1087.
dc.identifier.citedreferenceRittmann, B. E., Boltz, J. P., Brockmann, D., Daigger, G. T., Morgenroth, E., Sørensen, K. H., Takács, I., Van Loosdrecht, M., & Vanrolleghem, P. A. ( 2018 ). A framework for good biofilm reactor modeling practice (GBRMP). Water Science and Technology, 77 ( 5 ), 1149 – 1164. https://doi.org/10.2166/wst.2018.021
dc.identifier.citedreferenceRittmann, B. E., & McCarty, P. L. ( 2020 ). Environmental biotechnology principles and applications ( 2nd ed. ). McGraw Hill.
dc.identifier.citedreferenceRoman, B. ( 2021 ). Advancing the anaerobic biofilm membrane bioreactor. M.S. Thesis. Arizona State University.
dc.identifier.citedreferenceSabba, F., Calhoun, J., Johnson, B. R., Daigger, G. T., Kovács, R., Takács, I., & Boltz, J. P. ( 2017 ). Applications of mobile carrier biofilm modelling for wastewater treatment processes. In G. Mannina (Ed.), Frontiers in Wastewater Treatment and Modelling. FICWTM 2017 (Vol. 4 ). Lecture Notes in Civil Engineering. (pp. 508 – 512 ). Springer Nature.
dc.identifier.citedreferencevan Benthum, W. A. J., Garrido-Fernandez, J. M., Tijhuis, L., van Loosdrecht, M. C. M., & Heijnen, J. J. ( 1996 ). Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnology Progress, 12, 764 – 772.
dc.identifier.citedreferencevan Dijk, E. J. H., Haaksman, V. A., van Loosdrecht, M. C. M., & Pronk, M. ( 2022 ). On the mechanisms for aerobic granulation: Model based evaluation. Water Research, 216, 118365. https://doi.org/10.1016/j.watres.2022.118365
dc.identifier.citedreferenceVan Winckel, T., Vlaeminck, S. E., Al-Omari, A., Bachmann, B., Sturm, B., Wett, B., Takacs, I., Bott, C., Murthy, S. N., & De Clippeleir, H. ( 2019 ). Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification. Environmental Science: Water Research & Technology, 5, 1769 – 1781.
dc.identifier.citedreferenceVoulgaridis, E., Passialis, C., & Grigoriou, A. ( 2000 ). Anatomical characteristics and properties of kenaf stems ( Hibiscus cannabinus ). IAWA Journal, 21 ( 4 ), 435 – 442.
dc.identifier.citedreferenceWanner, O., Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B., & van Loosdrecht, M. ( 2006 ). Mathematical modeling of biofilms: Scientific and Technical Report No. 18. IWA Publishing.
dc.identifier.citedreferenceWei, S. P., Quoc, B. N., Shapiro, M., Chang, P. H., Calhoun, J., & Winkler, M. K. H. ( 2021 ). Application of aerobic kenaf granules for biological nutrient removal in a full-scale continuous flow activated sludge system. Chemosphere, 271, 129522.
dc.identifier.citedreferenceXu, J., Sugawara, R., Widyorini, R., Han, G., & Kawai, S. ( 2004 ). Manufacture and properties of low-density binderless particleboard from kenaf core. Journal of Wood Science, 50, 62 – 67.
dc.identifier.citedreferenceBoltz, J. P., Daigger, G. T., Johnson, B. R., & Austin, D. ( 2018 ). Biofilm media, treatment system and method of wastewater treatment (Patent No US 10,138,148 B2).
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.