Show simple item record

Locating the Precise Sources of High-Frequency Microseisms Using Distributed Acoustic Sensing

dc.contributor.authorXiao, Han
dc.contributor.authorTanimoto, Toshiro
dc.contributor.authorSpica, Zack J.
dc.contributor.authorGaite, Beatriz
dc.contributor.authorRuiz-Barajas, Sandra
dc.contributor.authorPan, Mohan
dc.contributor.authorViens, Loïc
dc.date.accessioned2022-10-05T15:51:37Z
dc.date.available2023-10-05 11:51:35en
dc.date.available2022-10-05T15:51:37Z
dc.date.issued2022-09-16
dc.identifier.citationXiao, Han; Tanimoto, Toshiro; Spica, Zack J.; Gaite, Beatriz; Ruiz-Barajas, Sandra ; Pan, Mohan; Viens, Loïc (2022). "Locating the Precise Sources of High- Frequency Microseisms Using Distributed Acoustic Sensing." Geophysical Research Letters 49(17): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/174919
dc.description.abstractAlthough microseisms have been observed for more than 100 years, the precise locations of their excitation sources in the oceans are still elusive. Underwater Distributed Acoustic Sensing (DAS) brings new opportunities to study microseism generation mechanisms. Using DAS data off the coast of Valencia, Spain, and applying a cross-correlation approach, we show that the sources of high-frequency microseisms (0.5–2 Hz) are confined between 7 and 27 km from the shore, where the water depth varies from 25 to 100 m. Over time, we observe that these sources move quickly along narrow areas, sometimes within a few kilometers. Our methodology applied to DAS data allows us to characterize microseisms with a high spatiotemporal resolution, providing a new way of understanding these global and complex seismic phenomena happening in the oceans.Plain Language SummaryMicroseisms are a type of seismic noise that is ubiquitous on Earth and has been studied for over 100 years. However, we still have no way of knowing exactly where it is generated in the ocean. Recent advances in underwater fiber-optic sensing bring a tremendous opportunity to better understand the source mechanism of microseisms. We use seafloor Distributed Acoustic Sensing data to achieve for the first time a precise localization of the noise sources of high-frequency microseisms. We found that the sources of high-frequency microseisms are very narrow, often only a few kilometers. Moreover, the noise source area is constantly changing with the wind direction.Key PointsA fiber-optic cable on the seafloor is used to locate the sources of high-frequency microseisms with an unprecedented precisionThe sources of high-frequency microseisms quickly move within narrow areas of a few kilometersThe constantly changing source locations are most likely related to the ephemeral behaviors of wind
dc.publisherCRC press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicroseisms
dc.subject.otherDAS
dc.subject.otherseismic noise
dc.subject.otherocean waves
dc.subject.otherScholte waves
dc.subject.otherwind
dc.titleLocating the Precise Sources of High-Frequency Microseisms Using Distributed Acoustic Sensing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174919/1/2022GL099292-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174919/2/grl64775.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174919/3/grl64775_am.pdf
dc.identifier.doi10.1029/2022GL099292
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. ( 2019 ). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10 ( 1 ), 5777. https://doi.org/10.1038/s41467-019-13793-z
dc.identifier.citedreferenceKoper, K. D., & Burlacu, R. ( 2015 ). The fine structure of double-frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 120 ( 3 ), 1677 – 1691. https://doi.org/10.1002/2014JB011820
dc.identifier.citedreferenceKoper, K. D., Seats, K., & Benz, H. ( 2010 ). On the composition of Earth’s short-period seismic noise field. Bulletin of the Seismological Society of America, 100 ( 2 ), 606 – 617. https://doi.org/10.1785/0120090120
dc.identifier.citedreferenceLe Pape, F., Craig, D., & Bean, C. J. ( 2021 ). How deep ocean-land coupling controls the generation of secondary microseism Love waves. Nature Communications, 12 ( 1 ), 2332. https://doi.org/10.1038/s41467-021-22591-5
dc.identifier.citedreferenceLindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. ( 2019 ). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366 ( 6469 ), 1103 – 1107. https://doi.org/10.1126/science.aay5881
dc.identifier.citedreferenceLonguet-Higgins, M. S. ( 1950 ). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London A-Mathematical and Physical Sciences, 243 ( 857 ), 1 – 35. https://doi.org/10.1098/rsta.1950.0012
dc.identifier.citedreferenceMuanenda, Y. ( 2018 ). Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. Journal of Sensors, 3897873. https://doi.org/10.1155/2018/3897873
dc.identifier.citedreferenceNishida, K. ( 2017 ). Ambient seismic wave field. Proceedings of the Japan Academy, Series B, 93 ( 7 ), 423 – 448. https://doi.org/10.2183/pjab.93.026
dc.identifier.citedreferenceNishida, K., & Takagi, R. ( 2016 ). Teleseismic S wave microseisms. Science, 353 ( 6302 ), 919 – 921. https://doi.org/10.1126/science.aaf7573
dc.identifier.citedreferenceNolet, G., & Dorman, L. M. ( 1996 ). Waveform analysis of Scholte modes in ocean sediment layers. Geophysical Journal International, 125 ( 2 ), 385 – 396. https://doi.org/10.1111/j.1365-246X.1996.tb00006.x
dc.identifier.citedreferencePoli, P., Campillo, M., & Pedersen, H. ( 2012 ). Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science, 338 ( 6110 ), 1063 – 1065. https://doi.org/10.1126/science.1228194
dc.identifier.citedreferencePosey, R., Johnson, G. A., & Vohra, S. T. ( 2000 ). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36 ( 20 ), 1688 – 1689. https://doi.org/10.1049/el:20001200
dc.identifier.citedreferencePyle, M. L., Koper, K. D., Euler, G. G., & Burlacu, R. ( 2015 ). Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays. Geophysical Research Letters, 42 ( 8 ), 2700 – 2708. https://doi.org/10.1002/2015GL063530
dc.identifier.citedreferenceRetailleau, L., & Gualtieri, L. ( 2021 ). Multi-phase seismic source imprint of tropical cyclones. Nature Communications, 12 ( 1 ), 2064. https://doi.org/10.1038/s41467-021-22231-y
dc.identifier.citedreferenceScholte, J. G. J. ( 1958 ). Rayleigh waves in isotropic and anisotropic elastic media, Staatsdr.- en Uitgeverijledrijf. Retrieved from https://books.google.com/books?id=ETNHGQAACAAJ
dc.identifier.citedreferenceShapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. ( 2005 ). High-resolution surface-wave tomography from ambient seismic noise. Science, 307 ( 5715 ), 1615 – 1618. https://doi.org/10.1126/science.1108339
dc.identifier.citedreferenceSpica, Z. J., Gaite, B., & Ruiz-Barajas, S. ( 2020 ). The Valencia-Islalink Distributed Acoustic Sensing Experiment. [Data Set]. PubDAS. https://doi.org/10.7914/SN/ZH_2020
dc.identifier.citedreferenceSpica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. ( 2020 ). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophysical Research Letters, 47 ( 16 ), e2020GL088360. https://doi.org/10.1029/2020GL088360
dc.identifier.citedreferenceTanimoto, T. ( 2007 ). Excitation of microseisms. Geophysical Research Letters, 34 ( 5 ). https://doi.org/10.1029/2006gl029046
dc.identifier.citedreferenceToksöz, M. N., & Lacoss, R. T. ( 1968 ). Microseisms: Mode structure and sources. Science, 159 ( 3817 ), 872 – 873. https://doi.org/10.1126/science.159.3817.872
dc.identifier.citedreferenceTolman, H. L. ( 2009 ). User manual and system documentation of WAVEWATCH III TM version 3.14. J Technical note, MMAB Contribution, 276, 220.
dc.identifier.citedreferenceWiechert, E. ( 1904 ). Discussion, Verhandlung der zweiten internationalen seismologischen Konferenz. Beitrage zur Geophysik, 2, 41 – 43.
dc.identifier.citedreferenceWilliams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. ( 2019 ). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10 ( 1 ), 5778. https://doi.org/10.1038/s41467-019-13262-7
dc.identifier.citedreferenceXiao, H., Tanimoto, T., & Xue, M. ( 2021 ). Study of S-wave microseisms generated by storms in the southeast Australia and north Atlantic. Geophysical Research Letters, 48 ( 15 ), e2021GL093728. https://doi.org/10.1029/2021GL093728
dc.identifier.citedreferenceXiao, H., Xue, M., Yang, T., Liu, C., Hua, Q., Xia, S., et al. ( 2018 ). The characteristics of microseisms in south China sea: Results from a combined data set of OBSs, broadband land seismic stations, and a global wave height model. Journal of Geophysical Research: Solid Earth, 123 ( 5 ), 3923 – 3942. https://doi.org/10.1029/2017JB015291
dc.identifier.citedreferenceZhang, J., Gerstoft, P., & Shearer, P. M. ( 2009 ). High-frequency P-wave seismic noise driven by ocean winds. Geophysical Research Letters, 36 ( 9 ), L09302. https://doi.org/10.1029/2009GL037761
dc.identifier.citedreferenceCapon, J. ( 1969 ). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57 ( 8 ), 1408 – 1418. https://doi.org/10.1109/proc.1969.7278
dc.identifier.citedreferenceDahlen, F. A., & Tromp, J. ( 2021 ). Princeton University Press. https://doi.org/10.1515/9780691216157
dc.identifier.citedreferenceSchweitzer, J., Fyen, J., Mykkeltveit, S., Kværna, T., & Bormann, P. ( 2002 ). Seismic arrays. In IASPEI new manual of seismological observatory practice (pp. 1 – 51 ).
dc.identifier.citedreferenceArdhuin, F., Gualtieri, L., & Stutzmann, E. ( 2015 ). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42 ( 3 ), 765 – 772. https://doi.org/10.1002/2014GL062782
dc.identifier.citedreferenceArdhuin, F., & Herbers, T. H. C. ( 2013 ). Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. Journal of Fluid Mechanics, 716, 316 – 348. https://doi.org/10.1017/jfm.2012.548
dc.identifier.citedreferenceArdhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. ( 2011 ). Ocean wave sources of seismic noise. Journal of Geophysical Research, 116 ( C9 ), C09004. https://doi.org/10.1029/2011JC006952
dc.identifier.citedreferenceBrenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. ( 2008 ). Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science, 321 ( 5895 ), 1478 – 1481. https://doi.org/10.1126/science.1160943
dc.identifier.citedreferenceBrenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. ( 2008 ). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1 ( 2 ), 126 – 130. https://doi.org/10.1038/ngeo104
dc.identifier.citedreferenceBromirski, P. D., Stephen, R. A., & Gerstoft, P. ( 2013 ). Are deep-ocean-generated surface-wave microseisms observed on land? Journal of Geophysical Research: Solid Earth, 118 ( 7 ), 3610 – 3629. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrb.50268
dc.identifier.citedreferenceDenolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. ( 2014 ). Strong ground motion prediction using virtual earthquakes. Science, 343 ( 6169 ), 399 – 403. https://doi.org/10.1126/science.1245678
dc.identifier.citedreferenceGal, M., Reading, A., Ellingsen, S., Koper, K., & Burlacu, R. ( 2017 ). Full wavefield decomposition of high-frequency secondary microseisms reveals distinct arrival azimuths for Rayleigh and Love waves. Journal of Geophysical Research: Solid Earth, 122 ( 6 ), 4660 – 4675. https://doi.org/10.1002/2017JB014141
dc.identifier.citedreferenceGroup, T. W. ( 1988 ). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18 ( 12 ), 1775 – 1810. https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
dc.identifier.citedreferenceGuerin, G., Rivet, D., van den Ende, M. P. A., Stutzmann, E., Sladen, A., & Ampuero, J.-P. ( 2022 ). Quantifying microseismic noise generation from coastal reflection of gravity waves recorded by seafloor DAS. Geophysical Journal International, 231 ( 1 ), 394 – 407. https://doi.org/10.1093/gji/ggac200
dc.identifier.citedreferenceHartog, A. H. ( 2017 ). An introduction to distributed optical fibre sensors. CRC press.
dc.identifier.citedreferenceHasselmann, K. ( 1963 ). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1 ( 2 ), 177 – 210. https://doi.org/10.1029/RG001i002p00177
dc.identifier.citedreferenceKedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. ( 2008 ). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 464 ( 2091 ), 777 – 793. https://doi.org/10.1098/rspa.2007.0277
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.