Show simple item record

Temporal refuges of a subordinate carnivore vary across rural–urban gradient

dc.contributor.authorMalhotra, Rumaan
dc.contributor.authorLima, Samantha
dc.contributor.authorHarris, Nyeema C.
dc.date.accessioned2022-10-05T15:51:51Z
dc.date.available2023-10-05 11:51:50en
dc.date.available2022-10-05T15:51:51Z
dc.date.issued2022-09
dc.identifier.citationMalhotra, Rumaan; Lima, Samantha; Harris, Nyeema C. (2022). "Temporal refuges of a subordinate carnivore vary across rural–urban gradient." Ecology and Evolution (9): n/a-n/a.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/174925
dc.description.abstractAnimals exhibit variation in their space and time use across an urban–rural gradient. As the top-down influences of apex predators wane due to human-driven declines, landscape-level anthropogenic pressures are rising. Human impacts can be analogous to apex predators in that humans can drive increased mortality in both prey species and carnivores, and impact communities through indirect fear effects and food subsidies. Here, we evaluate the time use of a common mesocarnivore across an urban–rural gradient and test whether it is influenced by the intensity of the use of a larger carnivore. Using multiple camera-trap surveys, we compared the temporal response of a small carnivore, the raccoon (Procyon lotor), to the larger coyote (Canis latrans) in four study areas across Michigan that represented a gradient of pressure from humans. We found that raccoon time use varied by study area and was most unique at the rural extreme. Raccoons consistently did not shift their activity pattern in response to coyotes in the study area with the highest anthropogenic pressures despite the considerable interannual variation, and instead showed stronger responses to coyotes in more rural study areas. Temporal shifts were characterized by raccoons being more diurnal in areas of high coyote activity. We conclude that raccoons may shift time use in the presence of coyotes, dependent on the level of anthropogenic pressure. Our results highlight that the variation in raccoon time use across the entirety of the urban–rural gradient needed to be considered, as anthropogenic pressures may dominate and obscure the dynamics of this interaction.Anthropogenic forces can alter temporal interactions between species. We compared the time use of a small carnivore across an urban-rural gradient, and tested whether it responded to the presence of a larger carnivore. We found that both time use and the response to a larger carnivore varied along the gradient, especially at the extremes.
dc.publisherSpringer Netherlands
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlandscape of fear
dc.subject.otherMichigan
dc.subject.otherniche
dc.subject.otherpartitioning
dc.subject.otherraccoon
dc.subject.othercoyote
dc.titleTemporal refuges of a subordinate carnivore vary across rural–urban gradient
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174925/1/ece39310.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174925/2/ece39310_am.pdf
dc.identifier.doi10.1002/ece3.9310
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceRanda, L. A., & Yunger, J. A. ( 2006 ). Carnivore occurrence along an urban-rural gradient: A landscape-level analysis. Journal of Mammalogy, 87 ( 6 ), 1154 – 1164.
dc.identifier.citedreferenceNewsome, T. M., Howden, C., & Wirsing, A. J. ( 2019 ). Restriction of anthropogenic foods alters a top predator’s diet and intraspecific interactions. Journal of Mammalogy, 100 ( 5 ), 1522 – 1532.
dc.identifier.citedreferenceNix, J. H., Howell, R. G., Hall, L. K., & McMillan, B. R. ( 2018 ). The influence of periodic increases of human activity on crepuscular and nocturnal mammals: Testing the weekend effect. Behavioural Processes, 146, 16 – 21. https://doi.org/10.1016/j.beproc.2017.11.002
dc.identifier.citedreferenceOro, D., Genovart, M., Tavecchia, G., Fowler, M. S., & Martínez-Abraín, A. ( 2013 ). Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 16 ( 12 ), 1501 – 1514.
dc.identifier.citedreferencePrange, S., Gehrt, S. D., & Wiggers, E. P. ( 2003 ). Demographic factors contributing to high raccoon densities in Urban landscapes. Journal of Wildlife Management, 67 ( 2 ), 324 – 333. https://doi.org/10.2307/3802774
dc.identifier.citedreferencePrugh, L. R., Stoner, C. J., Epps, C. W., Bean, W. T., Ripple, W. J., Laliberte, A. S., & Brashares, J. S. ( 2009 ). The rise of the mesopredator. Bioscience, 59 ( 9 ), 779 – 791.
dc.identifier.citedreferenceRidout, M. S., & Linkie, M. ( 2009 ). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14 ( 3 ), 322 – 337.
dc.identifier.citedreferenceRoemer, G. W., Gompper, M. E., & Van Valkenburgh, B. ( 2009 ). The ecological role of the mammalian Mesocarnivore. Bioscience, 59 ( 2 ), 165 – 173. https://doi.org/10.1525/bio.2009.59.2.9
dc.identifier.citedreferenceRuprecht, J., Eriksson, C. E., Forrester, T. D., Spitz, D. B., Clark, D. A., Wisdom, M. J., Bianco, M., Rowland, M. M., Smith, J. B., & Johnson, B. K. ( 2021 ). Variable strategies to solve risk–reward tradeoffs in carnivore communities. Proceedings of the National Academy of Sciences, 118 ( 35 ), e2101614118.
dc.identifier.citedreferenceSantos, F., Carbone, C., Wearn, O. R., Rowcliffe, J. M., Espinosa, S., Lima, M. G. M., Ahumada, J. A., Gonçalves, A. L. S., Trevelin, L. C., Alvarez-Loayza, P., Spironello, W. R., Jansen, P. A., Juen, L., & Peres, C. A. ( 2019 ). Prey availability and temporal partitioning modulate felid coexistence in neotropical forests. PLoS One, 14 ( 3 ), e0213671.
dc.identifier.citedreferenceSévêque, A., Gentle, L. K., Vicente López-Bao, J., Yarnell, R. W., & Uzal, A. ( 2022 ). Impact of human disturbance on temporal partitioning within carnivore communities. Mammal Review, 52 ( 1 ), 67 – 81.
dc.identifier.citedreferenceShedden, J. M., Bucklin, D. M., Quinn, N. M., & Stapp, P. ( 2020 ). Do coyotes eat Mesocarnivores in Southern California? A molecular genetic analysis. Proceedings of the Vertebrate Pest Conference 29 ( 29 ). Accessed Oct 15, 2021. https://escholarship.org/uc/item/1023p03m
dc.identifier.citedreferenceShores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M., & Wirsing, A. J. ( 2019 ). Mesopredators change temporal activity in response to a recolonizing apex predator. Behavioral Ecology, 30 ( 5 ), 1324 – 1335. https://doi.org/10.1093/beheco/arz080
dc.identifier.citedreferenceSmith, J. A., Suraci, J. P., Clinchy, M., Crawford, A., Roberts, D., Zanette, L. Y., & Wilmers, C. C. ( 2017 ). Fear of the human ‘super predator’reduces feeding time in large carnivores. Proceedings of the Royal Society B: Biological Sciences, 284 ( 1857 ), 20170433.
dc.identifier.citedreferenceSovie, A. R., Greene, D. U., Frock, C. F., Potash, A. D., & McCleery, R. A. ( 2019 ). Ephemeral temporal partitioning may facilitate coexistence in competing species. Animal Behaviour, 150, 87 – 96.
dc.identifier.citedreferenceStark, J. R., Aiello-Lammens, M., & Grigione, M. M. ( 2020 ). The effects of urbanization on carnivores in the New York metropolitan area. Urban Ecosystem, 23 ( 2 ), 215 – 225. https://doi.org/10.1007/s11252-019-00923-0
dc.identifier.citedreferenceSuraci, J. P., Clinchy, M., Dill, L. M., Roberts, D., & Zanette, L. Y. ( 2016 ). Fear of large carnivores causes a trophic cascade. Nature Communications, 7 ( 1 ), 1 – 7.
dc.identifier.citedreferenceSuraci, J. P., Clinchy, M., Zanette, L. Y., & Wilmers, C. C. ( 2019 ). Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecology Letters, 22 ( 10 ), 1578 – 1586.
dc.identifier.citedreferenceTimm, R., Cuarón, A., Reid, F., Helgen, K., González-Maya, J. ( 2017 ). Procyon lotor. The IUCN red list of threatened species 2016: e. T41686A45216638.
dc.identifier.citedreferenceTucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Moorter, B. V., Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N., Avgar, T., Bartlam-Brooks, H., Bayarbaatar, B., Belant, J. L., Bertassoni, A., Beyer, D., Bidner, L., van Beest, F. M., Blake, S., Blaum, N., … Mueller, T. ( 2018 ). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359 ( 6374 ), 466 – 469. https://doi.org/10.1126/science.aam9712
dc.identifier.citedreferenceUrban, M. C., Skelly, D. K., Burchsted, D., Price, W., & Lowry, S. ( 2006 ). Stream communities across a rural–urban landscape gradient. Diversity and Distributions, 12 ( 4 ), 337 – 350.
dc.identifier.citedreferenceVan Donselaar, J. L., Atma, J. L., Kruyf, Z. A., LaCroix, H. N., & Proppe, D. S. ( 2018 ). Urbanization alters fear behavior in black-capped chickadees. Urban Ecosystem, 21 ( 6 ), 1043 – 1051. https://doi.org/10.1007/s11252-018-0783-5
dc.identifier.citedreferenceWay, J. G., Auger, P. J., Ortega, I. M., & Strauss, E. G. ( 2001 ). Eastern coyote denning behavior in an anthropogenic environment. Northeast Wildlife, 56, 18 – 30.
dc.identifier.citedreferenceWheeldon, T., Patterson, B., & Beyer, D. ( 2012 ). Coyotes in wolves’ clothing. The American Midland Naturalist, 167 ( 2 ), 416 – 420.
dc.identifier.citedreferenceWirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P., & Schmitz, O. J. ( 2021 ). The context dependence of non-consumptive predator effects. Ecology Letters, 24 ( 1 ), 113 – 129. https://doi.org/10.1111/ele.13614
dc.identifier.citedreferenceAdams, R. A., & Thibault, K. M. ( 2006 ). Temporal resource partitioning by bats at water holes. Journal of Zoology, 270 ( 3 ), 466 – 472. https://doi.org/10.1111/j.1469-7998.2006.00152.x
dc.identifier.citedreferenceAgostinelli, C., Lund, U. ( 2017 ). R package ‘circular’: circular statistics (version 0.4-93). URL Httpsr-Forge R-Proj Orgprojectscircular.
dc.identifier.citedreferenceAthreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J., & Karanth, U. ( 2013 ). Big cats in our backyards: Persistence of large carnivores in a human dominated landscape in India. PLoS One, 8 ( 3 ), e57872. https://doi.org/10.1371/journal.pone.0057872
dc.identifier.citedreferenceAvilés-Rodríguez, K. J., & Kolbe, J. J. ( 2019 ). Escape in the city: Urbanization alters the escape behavior of Anolis lizards. Urban Ecosystem, 22 ( 4 ), 733 – 742. https://doi.org/10.1007/s11252-019-00845-x
dc.identifier.citedreferenceBatzli, G. O. ( 1992 ). Dynamics of small mammal populations: A review. In D. R. McCullough & R. H. Barrett (Eds.), Wildlife 2001: Populations (pp. 831 – 850 ). Springer Netherlands. https://doi.org/10.1007/978-94-011-2868-1_63
dc.identifier.citedreferenceBeasley, J. C., Olson, Z. H., Dharmarajan, G., Eagan, T. S., & Rhodes, O. E. ( 2011 ). Spatio-temporal variation in the demographic attributes of a generalist mesopredator. Landscape Ecology, 26 ( 7 ), 937 – 950.
dc.identifier.citedreferenceBekoff, M., & Gese, E. M. ( 2003 ). Coyote (Canis latrans). USDA Natl Wildl res cent-staff Publ.:224.
dc.identifier.citedreferenceBerger, J. ( 2007 ). Fear, human shields and the redistribution of prey and predators in protected areas. Biology Letters, 3 ( 6 ), 620 – 623.
dc.identifier.citedreferenceBreck, S. W., Poessel, S. A., Mahoney, P., & Young, J. K. ( 2019 ). The intrepid urban coyote: A comparison of bold and exploratory behavior in coyotes from urban and rural environments. Scientific Reports, 9 ( 1 ), 1 – 11.
dc.identifier.citedreferenceChitwood, M. C., Lashley, M. A., Higdon, S. D., DePerno, C. S., & Moorman, C. E. ( 2020 ). Raccoon vigilance and activity patterns when sympatric with coyotes. Diversity, 12 ( 9 ), 341. https://doi.org/10.3390/d12090341
dc.identifier.citedreferenceCiuti, S., Northrup, J. M., Muhly, T. B., Simi, S., Musiani, M., Pitt, J. A., & Boyce, M. S. ( 2012 ). Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS One, 7 ( 11 ), e50611.
dc.identifier.citedreferenceClinchy, M., Zanette, L. Y., Roberts, D., Suraci, J. P., Buesching, C. D., Newman, C., & Macdonald, D. W. ( 2016 ). Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behavioral Ecology, 27 ( 6 ), 1826 – 1832.
dc.identifier.citedreferenceColborn, A. S., Kuntze, C. C., Gadsden, G. I., & Harris, N. C. ( 2020 ). Spatial variation in diet–microbe associations across populations of a generalist north American carnivore. The Journal of Animal Ecology, 89 ( 8 ), 1952 – 1960. https://doi.org/10.1111/1365-2656.13266
dc.identifier.citedreferenceCrooks, K. R. ( 2002 ). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology, 16 ( 2 ), 488 – 502. https://doi.org/10.1046/j.1523-1739.2002.00386.x
dc.identifier.citedreferenceCrooks, K. R., & Soulé, M. E. ( 1999 ). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400 ( 6744 ), 563 – 566.
dc.identifier.citedreferenceDemeny, K., McLoon, M., Winesett, B., Fastner, J., Hammerer, E., & Pauli, J. N. ( 2019 ). Food subsidies of raccoons ( Procyon lotor ) in anthropogenic landscapes. Canadian Journal of Zoology, 97 ( 7 ), 654 – 657.
dc.identifier.citedreferenceDonadio, E., & Buskirk, S. W. ( 2006 ). Diet, morphology, and interspecific killing in carnivora. The American Naturalist, 167 ( 4 ), 524 – 536.
dc.identifier.citedreferenceDrake, M. D., Peterson, M. N., Griffith, E. H., Olfenbuttel, C., Moorman, C. E., & Deperno, C. S. ( 2019 ). Hunting interacts with socio-demographic predictors of human perceptions of urban coyotes. Wildlife Society Bulletin, 43 ( 3 ), 447 – 454. https://doi.org/10.1002/wsb.993
dc.identifier.citedreferenceElbroch, L. M., & Kusler, A. ( 2018 ). Are pumas subordinate carnivores, and does it matter? PeerJ, 6, e4293.
dc.identifier.citedreferenceEllington, E. H., & Gehrt, S. D. ( 2019 ). Behavioral responses by an apex predator to urbanization. Behavioral Ecology, 30 ( 3 ), 821 – 829.
dc.identifier.citedreferenceElmhagen, B., & Rushton, S. P. ( 2007 ). Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up? Ecology Letters, 10 ( 3 ), 197 – 206.
dc.identifier.citedreferenceFedriani, J. M., Fuller, T. K., Sauvajot, R. M., & York, E. C. ( 2000 ). Competition and intraguild predation among three sympatric carnivores. Oecologia, 125 ( 2 ), 258 – 270.
dc.identifier.citedreferenceFlores-Morales, M., Vázquez, J., Bautista, A., Rodríguez-Martínez, L., & Monroy-Vilchis, O. ( 2019 ). Response of two sympatric carnivores to human disturbances of their habitat: The bobcat and coyote. Mammal Res., 64 ( 1 ), 53 – 62.
dc.identifier.citedreferenceFowler, N. L., Kautz, T. M., Petroelje, T. R., Wilton, C. M., Kellner, K. F., O’Brien, D. J., Parsons, B., Beyer, D. E., Jr., & Belant, J. L. ( 2021 ). Marginal support for a trophic cascade among sympatric canids in peripheral wolf range. Ecology, 102 ( 11 ), e03494. https://doi.org/10.1002/ecy.3494
dc.identifier.citedreferenceGadsden, G. I., Malhotra, R., Schell, J., Carey, T., & Harris, N. C. ( 2021 ). Michigan ZoomIN: Validating crowd-sourcing to identify mammals from camera surveys. Wildlife Society Bulletin, 45 ( 2 ), 221 – 229.
dc.identifier.citedreferenceGallo, T., Fidino, M., Lehrer, E. W., & Magle, S. ( 2019 ). Urbanization alters predator-avoidance behaviours. The Journal of Animal Ecology, 88 ( 5 ), 793 – 803. https://doi.org/10.1111/1365-2656.12967
dc.identifier.citedreferenceGámez, S., Potts, A., Mills, K. L., Allen, A. A., Holman, A., Randon, P. M., Linson, O., & Harris, N. C. ( 2022 ). Downtown diet: A global meta-analysis of increased urbanization on the diets of vertebrate predators. Proceedings of the Royal Society B, 289 ( 1970 ), 20212487.
dc.identifier.citedreferenceGaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. ( 2018 ). The influence of human disturbance on wildlife nocturnality. Science, 360 ( 6394 ), 1232 – 1235. https://doi.org/10.1126/science.aar7121
dc.identifier.citedreferenceGehrt, S. D., & Clark, W. R. ( 2003 ). Raccoons, coyotes, and reflections on the mesopredator release hypothesis. Wildl Soc Bull 1973–2006, 31 ( 3 ), 836 – 842.
dc.identifier.citedreferenceGehrt, S. D., & Prange, S. ( 2007 ). Interference competition between coyotes and raccoons: A test of the mesopredator release hypothesis. Behavioral Ecology, 18 ( 1 ), 204 – 214. https://doi.org/10.1093/beheco/arl075
dc.identifier.citedreferenceGordon, C. E., Feit, A., Grüber, J., & Letnic, M. ( 2015 ). Mesopredator suppression by an apex predator alleviates the risk of predation perceived by small prey. Proceedings of the Royal Society B: Biological Sciences, 282 ( 1802 ), 20142870.
dc.identifier.citedreferenceGreen, A. M., Barnick, K. A., Pendergast, M. E., & Şekercioğlu, Ç. H. ( 2022 ). Species differences in temporal response to urbanization alters predator-prey and human overlap in northern Utah. Global Ecology and Conservation, 36, e02127. https://doi.org/10.1016/j.gecco.2022.e02127
dc.identifier.citedreferenceInouye, D. W. ( 1978 ). Resource partitioning in bumblebees: Experimental studies of foraging behavior. Ecology, 59 ( 4 ), 672 – 678.
dc.identifier.citedreferenceLesmeister, D. B., Nielsen, C. K., Schauber, E. M., & Hellgren, E. C. ( 2015 ). Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildlife Monographs, 191 ( 1 ), 1 – 61. https://doi.org/10.1002/wmon.1015
dc.identifier.citedreferenceLewis, J. S., Bailey, L. L., VandeWoude, S., & Crooks, K. R. ( 2015 ). Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecology and Evolution, 5 ( 24 ), 5946 – 5961. https://doi.org/10.1002/ece3.1812
dc.identifier.citedreferenceMagle, S. B., Hunt, V. M., Vernon, M., & Crooks, K. R. ( 2012 ). Urban wildlife research: Past, present, and future. Biological Conservation, 155, 23 – 32.
dc.identifier.citedreferenceMagle, S. B., Simoni, L. S., Lehrer, E. W., & Brown, J. S. ( 2014 ). Urban predator–prey association: Coyote and deer distributions in the Chicago metropolitan area. Urban Ecosystem, 17 ( 4 ), 875 – 891. https://doi.org/10.1007/s11252-014-0389-5
dc.identifier.citedreferenceManlick, P. J., & Pauli, J. N. ( 2020 ). Human disturbance increases trophic niche overlap in terrestrial carnivore communities. Proceedings of the National Academy of Sciences, 117 ( 43 ), 26842 – 26848. https://doi.org/10.1073/pnas.2012774117
dc.identifier.citedreferenceMarcus Rowcliffe, J., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. ( 2011 ). Quantifying the sensitivity of camera traps: An adapted distance sampling approach. Methods in Ecology and Evolution, 2 ( 5 ), 464 – 476.
dc.identifier.citedreferenceMarzluff, J. M. ( 2001 ). Worldwide urbanization and its effects on birds. In J. M. Marzluff, R. Bowman, R. Donnelly (Eds.), Avian ecology and conservation in an urbanizing world (pp. 19 – 47 ). Springer.
dc.identifier.citedreferenceMcClennen, N., Wigglesworth, R. R., Anderson, S. H., & Wachob, D. G. ( 2001 ). The effect of suburban and agricultural development on the activity patterns of coyotes ( Canis latrans ). The American Midland Naturalist, 146 ( 1 ), 27 – 36.
dc.identifier.citedreferenceMcDonnell, M. J., & Pickett, S. T. ( 1990 ). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71 ( 4 ), 1232 – 1237.
dc.identifier.citedreferenceMormile, J. E., & Hill, C. M. ( 2017 ). Living with urban baboons: Exploring attitudes and their implications for local baboon conservation and management in Knysna, South Africa. Human Dimensions of Wildlife, 22 ( 2 ), 99 – 109.
dc.identifier.citedreferenceNewsome, T. M., Dellinger, J. A., Pavey, C. R., Ripple, W. J., Shores, C. R., Wirsing, A. J., & Dickman, C. R. ( 2015 ). The ecological effects of providing resource subsidies to predators. Global Ecology and Biogeography, 24 ( 1 ), 1 – 11. https://doi.org/10.1111/geb.12236
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.