Show simple item record

Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury

dc.contributor.authorAdidharma, Widya
dc.contributor.authorKhouri, Alexander N.
dc.contributor.authorLee, Jennifer C.
dc.contributor.authorVanderboll, Kathryn
dc.contributor.authorKung, Theodore A.
dc.contributor.authorCederna, Paul S.
dc.contributor.authorKemp, Stephen W. P.
dc.date.accessioned2022-10-05T15:51:57Z
dc.date.available2023-11-05 11:51:56en
dc.date.available2022-10-05T15:51:57Z
dc.date.issued2022-10
dc.identifier.citationAdidharma, Widya; Khouri, Alexander N.; Lee, Jennifer C.; Vanderboll, Kathryn; Kung, Theodore A.; Cederna, Paul S.; Kemp, Stephen W. P. (2022). "Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury." Muscle & Nerve 66(4): 384-396.
dc.identifier.issn0148-639X
dc.identifier.issn1097-4598
dc.identifier.urihttps://hdl.handle.net/2027.42/174928
dc.description.abstractSensory afferent fibers are an important component of motor nerves and compose the majority of axons in many nerves traditionally thought of as “pure” motor nerves. These sensory afferent fibers innervate special sensory end organs in muscle, including muscle spindles that respond to changes in muscle length and Golgi tendons that detect muscle tension. Both play a major role in proprioception, sensorimotor extremity control feedback, and force regulation. After peripheral nerve injury, there is histological and electrophysiological evidence that sensory afferents can reinnervate muscle, including muscle that was not the nerve’s original target. Reinnervation can occur after different nerve injury and muscle models, including muscle graft, crush, and transection injuries, and occurs in a nonspecific manner, allowing for cross-innervation to occur. Evidence of cross-innervation includes the following: muscle spindle and Golgi tendon afferent-receptor mismatch, vagal sensory fiber reinnervation of muscle, and cutaneous afferent reinnervation of muscle spindle or Golgi tendons. There are several notable clinical applications of sensory reinnervation and cross-reinnervation of muscle, including restoration of optimal motor control after peripheral nerve repair, flap sensation, sensory protection of denervated muscle, neuroma treatment and prevention, and facilitation of prosthetic sensorimotor control. This review focuses on sensory nerve regeneration and reinnervation in muscle, and the clinical applications of this phenomena. Understanding the physiology and limitations of sensory nerve regeneration and reinnervation in muscle may ultimately facilitate improvement of its clinical applications.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermuscle
dc.subject.otherperipheral nerve
dc.subject.otherregeneration
dc.subject.otherreinnervation
dc.subject.othersensory nerve
dc.titleSensory nerve regeneration and reinnervation in muscle following peripheral nerve injury
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174928/1/mus27661_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174928/2/mus27661.pdf
dc.identifier.doi10.1002/mus.27661
dc.identifier.sourceMuscle & Nerve
dc.identifier.citedreferenceZhao C, Veltri K, Li S, Bain JR, Fahnestock M. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma. 2004; 21: 1468 - 1478.
dc.identifier.citedreferenceGordon L, Buncke H, Alpert B. Free latissimus dorsi muscle flap with split-thickness skin graft cover: a report of 16 cases. Plast Reconstr Surg. 1982; 70: 173 - 178.
dc.identifier.citedreferenceSchultes G, Gaggl A, Kärcher H. Neuronal anastomosis of the cutaneous ramus of the intercostal nerve to achieve sensibility in the latissimus dorsi transplant. J Oral Maxillofac Surg. 2000; 58: 36 - 39.
dc.identifier.citedreferencePlace M, Song T, Hardesty R, Hendricks D. Sensory reinnervation of autologous tissue TRAM flaps after breast reconstruction. Ann Plast Surg. 1997; 38: 19 - 22.
dc.identifier.citedreferenceRussell R, Guy R, Zook E, Merrell J. Extremity reconstruction using the free deltoid flap. Plast Reconstr Surg. 1985; 76: 586 - 595.
dc.identifier.citedreferenceOh SJ, Moon M, Cha J, Koh SH, Chung CH. Weight-bearing plantar reconstruction using versatile medial plantar sensate flap. J Plast Reconstr Aesthet Surg. 2011; 64: 248 - 254.
dc.identifier.citedreferenceYücel A, Senyuva C, Aydin Y, Cinar C, Güzel Z. Soft-tissue reconstruction of sole and heel defects with free tissue transfers. Ann Plast Surg. 2000; 44: 259 - 268.
dc.identifier.citedreferenceNamin AW, Varvares MA. Functional outcomes of sensate versus insensate free flap reconstruction in oral and oropharyngeal reconstruction: a systematic review. Head Neck. 2016; 38: 1717 - 1721.
dc.identifier.citedreferenceYoshitatsu S, Matsuda K, Yano K, Hosokawa K, Tomita K. Muscle flap mass preservation by sensory reinnervation with end-to-side neurorrhaphy: an experimental study in rats. J Reconstr Microsurg. 2008; 24: 479 - 487.
dc.identifier.citedreferenceEberlin KR, Ducic I. Surgical algorithm for neuroma management: a changing treatment paradigm. Plast Reconstr Surg Glob Open. 2018; 6: e1952.
dc.identifier.citedreferenceMackinnon S, Dellon A, Hudson A, Hunter D. Alteration of neuroma formation by manipulation of its microenvironment. Plast Reconstr Surg. 1985; 76: 345 - 353.
dc.identifier.citedreferenceKubiak CA, Kemp SWP, Cederna PS, Kung TA. Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain. Plast Reconstr Surg. 2019; 144: 421e - 430e.
dc.identifier.citedreferenceKung TA, Langhals NB, Martin DC, Johnson PJ, Cederna PS, Urbanchek MG. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plast Reconstr Surg. 2014; 133: 1380 - 1394.
dc.identifier.citedreferenceWoo SL, Kung TA, Brown DL, Leonard JA, Kelly BM, Cederna PS. Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: a pilot study. Plast Reconstr Surg Glob Open. 2016; 4: e1038.
dc.identifier.citedreferenceHooper RC, Cederna PS, Brown DL, et al. Regenerative peripheral nerve interfaces for the management of symptomatic hand and digital neuromas. Plast Reconstr Surg Glob Open. 2020; 8: e2792.
dc.identifier.citedreferenceDumanian GA, Potter BK, Mioton LM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg. 2019; 270: 238 - 246.
dc.identifier.citedreferenceSouza JM, Cheesborough JE, Ko JH, Cho MS, Kuiken TA, Dumanian GA. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin Orthop Relat Res. 2014; 472: 2984 - 2990.
dc.identifier.citedreferenceFracol ME, Dumanian GA, Janes LE, Bai J, Ko JH. Management of sural nerve neuromas with targeted muscle reinnervation. Plast Reconstr Surg Glob Open. 2020; 8:1-4.
dc.identifier.citedreferenceKuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JPA. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci. 2007; 104: 20061 - 20066.
dc.identifier.citedreferenceMarasco PD, Schultz AE, Kuiken TA. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain. 2009; 132: 1441 - 1448.
dc.identifier.citedreferenceSensinger JW, Schultz AE, Kuiken TA. Examination of force discrimination in human upper limb amputees with reinnervated limb sensation following peripheral nerve transfer. IEEE Trans Neural Syst Rehabil Eng. 2009; 17: 438 - 444.
dc.identifier.citedreferenceSchultz AE, Marasco PD, Kuiken TA. Vibrotactile detection thresholds for chest skin of amputees following targeted reinnervation surgery. Brain Res. 2009; 1251: 121 - 129.
dc.identifier.citedreferenceYao J, Chen A, Kuiken T, Carmona C, Dewald J. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: a case report. NeuroImage Clin. 2015; 8: 329 - 336.
dc.identifier.citedreferenceSvensson P, Wijk U, Björkman A, Antfolk C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev Med Dev. 2017; 14: 439 - 447.
dc.identifier.citedreferenceHebert JS, Olson JL, Morhart MJ, et al. Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans Neural Syst Rehabil Eng. 2014; 22: 765 - 773.
dc.identifier.citedreferenceHebert JS, Chan KM, Dawson MR. Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases. Prosthet Orthot Int. 2016; 40: 303 - 310.
dc.identifier.citedreferenceVu PP, Lu CW, Vaskov AK, et al. Restoration of proprioceptive and cutaneous sensation using regenerative peripheral nerve interfaces (RPNIs) in humans with upper-limb amputations. Plast Reconstr Surg. 2022. 10.1097/PRS.0000000000009153, 149, 1149e, 1154e
dc.identifier.citedreferenceMenorca RMG, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013; 29: 317 - 330.
dc.identifier.citedreferenceIves GC, Kung TA, Nghiem BT, et al. Current state of the surgical treatment of terminal neuromas. Clin Neurosurg. 2018; 83: 354 - 364.
dc.identifier.citedreferenceKozusko SD, Kaminsky AJ, Boyd LC, Konofaos P. Sensory neurotization of muscle: past, present and future considerations. J Plast Surg Hand Surg. 2019; 53: 31 - 36.
dc.identifier.citedreferenceNghiem BT, Hu Y, Sando I, Urbanchek M, Cederna PS. Sensory protection to enhance functional recovery following proximal nerve injuries: current trends. Plast Aesthet Res. 2015; 2: 202.
dc.identifier.citedreferencePage MJ, McKenzie JE, Bossuyt PM, et al. 2020 The PRISMA statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 74: 372.
dc.identifier.citedreferenceBramer WM, Giustini D, de Jong GB, Holland L, Bekhuis T. De-duplication of database search results for systematic reviews in endnote. J Med Libr Assoc. 2016; 104: 240 - 243.
dc.identifier.citedreferenceNghiem BT, Sando IC, Gillespie RB, et al. Providing a sense of touch to prosthetic hands. Plast Reconstr Surg. 2015; 135: 1652 - 1663.
dc.identifier.citedreferenceGesslbauer B, Hruby LA, Roche AD, Farina D, Blumer R, Aszmann OC. Axonal components of nerves innervating the human arm. Ann Neurol. 2017; 82: 396 - 408.
dc.identifier.citedreferenceMadison RD, Archibald SJ, Brushart TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. J Neurosci. 1996; 16: 5698 - 5703.
dc.identifier.citedreferenceMaki Y, Yoshizu T, Tajima T, Narisawa H. The selectivity of motor axons during regeneration with sensory axons. J Reconstr Microsurg. 1996; 12: 553 - 556.
dc.identifier.citedreferenceKoeppen BM, Stanton BA. Organization of motor function. In: Koeppen BM, Stanton BA, eds. Berne and Levy Physiology. 7th ed. Elsevier; 2018: 161 - 207.
dc.identifier.citedreferenceBanks RW, Hulliger M, Saed HH, Stacey MJ. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings. J Anat. 2009; 214: 859 - 887.
dc.identifier.citedreferenceBanks RW, Barker D. Specificities of afferents reinnervating cat muscle spindles after nerve section. J Physiol. 1989; 408: 345 - 372.
dc.identifier.citedreferenceMancall EL, Brock DG. Gray’s Clinical Neuroanatomy: The Anatomic Basis for Clinical Neuroscience. Elsevier; 2011.
dc.identifier.citedreferenceBanks RW. The innervation of the muscle spindle: a personal history. J Anat. 2015; 227: 115 - 135.
dc.identifier.citedreferenceKandel ER, Koester JD, Mack SH, Siegelbaum SA. Principles of Neural Science, 6th ed. McGraw-Hill; 2021 https://neurology-mhmedical-com.proxy.lib.umich.edu/content.aspx?bookid =3024&sectionid=254326744. Accessed December 15, 2021.
dc.identifier.citedreferenceLatash ML. Muscle coactivation: definitions, mechanisms, and functions. J Neurophysiol. 2018; 120: 88 - 104.
dc.identifier.citedreferenceRogers SL. Muscle spindle formation and differentiation in regenerating rat muscle grafts. Dev Biol. 1982; 94: 265 - 283.
dc.identifier.citedreferenceBarker D, Scott JJA, Stacey MJ. Sensory reinnervation of cat peroneus brevis muscle spindles after nerve crush. Brain Res. 1985; 333: 131 - 138.
dc.identifier.citedreferenceDieler R, Schriider JM. Abnormal sensory and motor reinnervation of rat muscle spindles following nerve transection and suture. Acta Neuropathol. 1990; 80: 163 - 171.
dc.identifier.citedreferenceGallego R, Kuno M, Nfyez R, Snider WD, Nuiez R. Enhancement of synaptic function in cat motoneurones during peripheral sensory regeneration. J Physiol. 1980; 306: 205 - 218.
dc.identifier.citedreferenceScott JJA. Responses of cat muscle spindle afferents after short periods of denervation and reinnervation. Brain Res. 1988; 461: 381 - 383.
dc.identifier.citedreferenceValero-Cabré A, Navarro X. Changes in crossed spinal reflexes after peripheral nerve injury and repair. J Neurophysiol. 2002; 87: 1763 - 1771.
dc.identifier.citedreferenceBarker D, Scott JJA, Stacey MJ. Reinnervation and recovery of cat muscle receptors after long-term denervation. Exp Neurol. 1986; 94: 184 - 202.
dc.identifier.citedreferenceIp M, Vkbova G, Westu DR. The sensory reinnervation of hind limb muscles of the cat following denervation and de-efferentation. Neuroscience. 1977; 2: 423 - 434.
dc.identifier.citedreferencePang YW, Hong QN, Zheng JN. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein grafts. Neural Regen Res. 2014; 9: 610 - 615.
dc.identifier.citedreferenceBanks RW, Barker D, Brown HG. Sensory reinnervation of muscles following nerve section and suture in cats. J Hand Surg Eur Vol. 1985; 10: 340 - 344.
dc.identifier.citedreferenceMyles LM, Gilmour JA, Glasby MA. Effects of different methods of peripheral nerve repair on the number and distribution of muscle afferent neurons in rat dorsal root ganglion. J Neurosurg. 1992; 77: 457 - 462.
dc.identifier.citedreferenceCollins WF III, Mendell LM, Munson JB. On the specificity of sensory reinnervation of cat skeletal muscle. J Physiol. 1986; 375: 587 - 609.
dc.identifier.citedreferenceBrown MC, Butler RG. Regeneration of afferent and efferent fibres to muscle spindles after nerve injury in adults cats. J Physiol. 1976; 260: 253 - 266.
dc.identifier.citedreferenceDecherchi P, Vuillon-Cacciutolo G, Darques J-L, Jammes Y. Changes in afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Muscle Nerve. 2001; 24: 59 - 68.
dc.identifier.citedreferenceCope TC, Bonasera SJ, Nichols TR. Reinnervated muscles fail to produce stretch reflexes. J Neurophysiol. 1994; 71: 817 - 820.
dc.identifier.citedreferenceGregory JE, Luff AR, Proske U. Muscle receptors in the cross-reinnervated soleus muscle of the cat. J Physiol. 1982; 331: 367 - 383.
dc.identifier.citedreferenceMarqueste T, Decherchi P, Dousset E, Berthelin F, Jammes Y. Effect of muscle electrostimulation on afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Neuroscience. 2002; 113: 257 - 271.
dc.identifier.citedreferenceHaftel VK, Bichler EK, Wang QB, Prather JF, Pinter MJ, Cope TC. Central suppression of regenerated proprioceptive afferents. J Neurosci. 2005; 25: 4733 - 4742.
dc.identifier.citedreferenceBarker D, Berry RB, Scott JJA. The sensory reinnervation of muscles following immediate and delayed nerve repair in the cat. Br J Plast Surg. 1990; 43: 107 - 111.
dc.identifier.citedreferenceBrunetti O, Carretta M, Magni F, Pazzaglia U. Role of the interval between axotomy and nerve suture on the success of muscle reinnervation: an experimental study in the rabbit. Exp Neurol. 1985; 90: 308 - 321.
dc.identifier.citedreferenceKoerber HR, Seymour AW, Mendell LM. Mismatches between peripheral receptor type and central projections after peripheral nerve regeneration. Neurosci Lett. 1989; 99: 67 - 72.
dc.identifier.citedreferenceMcMahon SB, Gibson S. Peptide expression is altered when afferent nerves reinnervate inappropriate tissue. Neurosci Lett. 1987; 73: 9 - 15.
dc.identifier.citedreferenceIp MC, Luff AR, Proske U. Innervation of muscle receptors in the cross-reinnervated soleus muscle of the cat. Anat Rec. 1988; 220: 212 - 218.
dc.identifier.citedreferenceJohnson RD, Taylor JS, Mendell LM, Munson JB. Rescue of motoneuron and muscle afferent function in cats by regeneration into skin. I. Properties of afferents. J Neurophysiol. 1995; 73: 651 - 661.
dc.identifier.citedreferenceTode J, Kirillova-Woytke I, Rausch VH, Baron R, Jänig W. Mechano-and thermosensitivity of injured muscle afferents 20 to 80 days after nerve injury. J Neurophysiol. 2018; 119: 1889 - 1901.
dc.identifier.citedreferenceFalempin M, Rousseau JP. Reinnervation of skeletal muscles by vagal sensory fibres in the sheep, cat and rabbit. J Physiol. 1983; 335: 467 - 479.
dc.identifier.citedreferenceRogers SL, Carlkin BM. A quantitative assessment of muscle spindle formation in reinnervated and non-reinnervated grafts of the rat extensor digitorum longus muscle. Neuroscience. 1981; 6: 87 - 94.
dc.identifier.citedreferenceQuick DC, Rogers SL. Stretch receptors in regenerated rat muscle. Neuroscience. 1983; 10: 851 - 859.
dc.identifier.citedreferenceKanamaru A, Suzuki S, Sibuya M, Homma I, Sai K, Hara T. Sensory reinnervation of muscle receptor in human. Neurosci Lett. 1993; 161: 27 - 29.
dc.identifier.citedreferenceSai K, Kanamaru A, Sibuyaa M, Homma I, Hara T. Reconstruction of tonic vibration reflex in the biceps brachii reinnervated by transferred intercostal nerves in patients with brachial plexus injury. Neurosci Lett. 1996; 206: 1 - 4.
dc.identifier.citedreferenceBain JR, Hason Y, Veltri K, Fahnestock M, Quartly C. Clinical application of sensory protection of denervated muscle: case report. J Neurosurg. 2008; 109: 955 - 961.
dc.identifier.citedreferenceBarker D, Young J. Recovery of stretch reflexes after nerve injury. Lancet. 1947; 249: 704 - 707.
dc.identifier.citedreferenceTaylor MD, Holdeman AS, Weltmer SG, Ryals JM, Wright DE. Modulation of muscle spindle innervation by neurotrophin-3 following nerve injury. Exp Neurol. 2005; 191: 211 - 222.
dc.identifier.citedreferenceAbelew TA, Miller MD, Cope TC, Nichols TR. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat. J Neurophysiol. 2000; 84: 2709 - 2714.
dc.identifier.citedreferenceTakano K. Experimental brain research absence of the gamma-spindle loop in the reinnervated hind leg muscles of the cat: “alpha-muscle. ”. Brain Res. 1976; 26: 343 - 354.
dc.identifier.citedreferenceMendell LM, Henneman E. Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons. J Neurophysiol. 1971; 34: 171 - 187.
dc.identifier.citedreferenceAlvarez FJ, Bullinger KL, Titus HE, Nardelli P, Cope TC. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries. Ann NY Acad Sci. 2010; 1198: 231 - 241.
dc.identifier.citedreferenceAsano K, Nakano T, Tokutake K, et al. Muscle spindle reinnervation using transplanted embryonic dorsal root ganglion cells after peripheral nerve transection in rats. Cell Prolif. 2019; 52: e12660.
dc.identifier.citedreferenceUdina E, Puigdemasa A, Navarro X. Passive and active exercise improve regeneration and muscle reinnervation after peripheral nerve injury in the rat. Muscle Nerve. 2011; 43: 500 - 509.
dc.identifier.citedreferenceMendell LM, Taylor JS, Johnson RD, Munson JB. Rescue of motoneuron and muscle merent function in cats by regeneration into skin. II. Ia-motoneuron synapse. J Neurophysiol. 1995; 73: 662 - 673.
dc.identifier.citedreferencePapakonstantinou KC, Kamin E, Terzis JK. Muscle preservation by prolonged sensory protection. J Reconstr Microsurg. 2002; 18: 173 - 182.
dc.identifier.citedreferenceLi QT, Zhang PX, Yin XF, et al. Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study. PLoS One. 2013; 8:1-11.
dc.identifier.citedreferenceVeltri K, Kwiecien JM, Minet W, Fahnestock M, Bain JR. Contribution of the distal nerve sheath to nerve and muscle preservation following denervation and sensory protection. J Reconstr Microsurg. 2005; 21: 57 - 70.
dc.identifier.citedreferenceFu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995; 15: 3886 - 3895.
dc.identifier.citedreferenceBorisov AB, Dedkov EI, Carlson BM. Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle. Anat Rec. 2001; 264: 203 - 218.
dc.identifier.citedreferenceHall S. The response to injury in the peripheral nervous system. J Bone Joint Surg Br. 2005; 87: 1309 - 1319.
dc.identifier.citedreferenceWood MB, Murray PM. Heterotopic nerve transfers: recent trends with expanding indication. J Hand Surg. 2007; 32: 397 - 408.
dc.identifier.citedreferenceJaeger MRDO, Braga-Silva J, Gehlen D, et al. End-to-end versus end-to-side motor and sensory neurorrhaphy in the repair of the acute muscle denervation. Ann Plast Surg. 2011; 67: 391 - 396.
dc.identifier.citedreferenceOswald TM, Zhang F, Lei M-P, Gerzenshtein J, Lineaweaver WC. Muscle flap mass preservation with end-to-side neurorrhaphy: an experimental study. J Reconstr Microsurg. 2004; 20: 483 - 488.
dc.identifier.citedreferenceZhang F, Lineaweaver W, Ustüner T, et al. Comparison of muscle mass preservation in denervated muscle and transplanted muscle flaps after motor and sensory reinnervation and neurotization. Plast Reconstr Surg. 1997; 99: 803 - 814.
dc.identifier.citedreferenceHynes NM, Bain JR, Thoma A, Veltri K, Maguire JA. Preservation of denervated muscle by sensory protection in rats. J Reconstr Microsurg. 1997; 13: 337 - 343.
dc.identifier.citedreferenceBain JR, Veltri KL, Chamberlain D, Fahnestock M. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience. 2001; 103: 503 - 510.
dc.identifier.citedreferenceZuijdendorp HM, Tra WMW, van Neck JW, Mollis L, Coert JH. Delay of denervation atrophy by sensory protection in an end-to-side neurorrhaphy model: a pilot study. J Plas Reconstr Aesthet Surg. 2010; 63: 1949 - 1952.
dc.identifier.citedreferenceLi Q, Zhang P, Yin X, Han N, Kou Y, Jiang B. Early sensory protection in reverse end-to-side neurorrhaphy to improve the functional recovery of chronically denervated muscle in rat: a pilot study: laboratory investigation. J Neurosurg. 2014; 121: 415 - 422.
dc.identifier.citedreferenceWang H, Gu Y, Xu J, Shen L, Li J. Comparative study of different surgical procedures using sensory nerves or neurons for delaying atrophy of denervated skeletal muscle. J Hand Surg. 2001; 26: 326 - 331.
dc.identifier.citedreferenceOchi M, Kwong W, Kimori K, Takemoto S, Chow S, Ikuta Y. Delay of the denervation process in skeletal muscle by sensory ganglion graft and its clinical application. Plast Reconstr Surg. 1996; 97: 577 - 586.
dc.identifier.citedreferenceBeck-Broichsitter BE, Becker ST, Lamia A, Fregnan F, Geuna S, Sinis N. Sensoric protection after median nerve injury: babysitter-procedure prevents muscular atrophy and improves neuronal recovery. BioMed Res Int. 2014; 2014:1-7.
dc.identifier.citedreferenceHosseinian MA, Shirian S, Loron AG, Ebrahimy AA, Hayatolah GH. Distal sensory to distal motor nerve anastomosis can protect lower extremity muscle atrophy in a murine model. Eur J Plast Surg. 2018; 41: 9 - 14.
dc.identifier.citedreferenceSönmez E, Uğur Kayikçioğlu A, Temuçin M, Keçik A. Motor reinnervation of a denervated muscle by using a sensory nerve: an experimental study on gluteus maximus muscle of the rat. J Hand Surg Am. 2007; 32: 1183 - 1189.
dc.identifier.citedreferenceGutmann E. The reinnervation of muscle by sensory nerve fibres. J Anat. 1945; 79: 1 - 12.
dc.identifier.citedreferenceElsohemy A, Butler R, Bain JR, Fahnestock M. Sensory protection of rat muscle spindles following peripheral nerve injury and reinnervation. Plast Reconstr Surg. 2009; 124: 1860 - 1868.
dc.identifier.citedreferenceNoordin S, Ahmed M, Rehman R, Ahmad T, Hashmi P. Neuronal regeneration in denervated muscle following sensory and muscular neurotization. Acta Orthop. 2008; 79: 126 - 133.
dc.identifier.citedreferenceWilland MP, Holmes M, Bain JR, de Bruin H, Fahnestock M. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle. Plast Reconstr Surg. 2014; 134: 736e - 745e.
dc.identifier.citedreferenceGeremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VMK. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. 2007; 205: 347 - 359.
dc.identifier.citedreferenceKucera J, Walro J. alteration of intrafusal bundle composition by nerve crush in neonatal rats. Vol 127. Veterans Administration Medical Center; 1989: 150.
dc.identifier.citedreferenceMichalski B, Bain JR, Fahnestock M. Long-term changes in neurotrophic factor expression in distal nerve stump following denervation and reinnervation with motor or sensory nerve. J Neurochem. 2008; 105: 1244 - 1252.
dc.identifier.citedreferenceSiemionow M, Latifoglu O, Demirkan F, Siemionow W, Lister G. Assessment of muscle flap sensibility by evoked potentials in the rat. Microsurgery. 2000; 20: 85 - 93.
dc.identifier.citedreferenceBayramiçli M, Jackson IT, Herschman B. Innervation of skin grafts over free muscle flaps. Br J Plast Surg. 2000; 53: 130 - 136.
dc.identifier.citedreferenceHattori Y, Chuang D, Lan C. Sensory restoration of the skin graft on a free muscle flap: experimental rabbit study. Plast Reconstr Surg. 2001; 108: 132 - 140.
dc.identifier.citedreferenceGoldberg JA, Trabulsy P, Lineaweaver WC, Buncke HJ. Sensory reinnervation of muscle free flaps for foot reconstruction. J Reconstr Microsurg. 1994; 10: 7 - 9.
dc.identifier.citedreferenceChang K, DeArmond S, Buncke HJ Jr. Sensory reinnervation in microsurgical reconstruction of the heel. Plast Reconstr Surg. 1986; 78: 652 - 664.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.