Show simple item record

Integrating effects of neighbor interactions for pollination and abiotic resources on coffee yield in a multi-strata agroforest

dc.contributor.authorFitch, Gordon
dc.contributor.authorGonzalez, John
dc.contributor.authorOana, Anna M.
dc.contributor.authorOliver, Maggie
dc.contributor.authorVandermeer, John
dc.date.accessioned2022-10-05T15:52:15Z
dc.date.available2023-10-05 11:52:13en
dc.date.available2022-10-05T15:52:15Z
dc.date.issued2022-09
dc.identifier.citationFitch, Gordon; Gonzalez, John; Oana, Anna M.; Oliver, Maggie; Vandermeer, John (2022). "Integrating effects of neighbor interactions for pollination and abiotic resources on coffee yield in a multi-strata agroforest." Biotropica (5): 1226-1237.
dc.identifier.issn0006-3606
dc.identifier.issn1744-7429
dc.identifier.urihttps://hdl.handle.net/2027.42/174935
dc.description.abstractAnimal-pollinated plants interact with neighbors for both abiotic resources and pollination, with consequences for reproduction and yield. Yet few studies have compared the relative magnitude of these effects, particularly in agroecosystems. In vertically stratified communities, such as agroforests, neighbor effects may be stratum-dependent. Understanding the net effects of neighbors on crop yield is important for managing multifunctional agroecosystems to simultaneously support production and biodiversity. This study evaluated the effects of neighboring plants on pollen deposition, fertilization, and yield in Coffea arabica in a shaded organic coffee farm with high non-crop plant abundance and diversity in Chiapas, Mexico. We assessed the impact of (1) floral resources at three vertical strata (herbs, coffee bushes, and canopy trees) on stigma pollen load (a measure of interaction for pollination), and (2) floral density and canopy cover (proxies for competition for abiotic resources) on yield (final fruit set and per-fruit weight), using structural equation modeling to evaluate the relative effect of each interaction type. Coffee competed for pollination with neighbors (conspecifics and heterospecifics) across strata. Pollen load influenced final fruit set, but the effect of neighbor competition for pollination was weaker than effects mediated by interactions for abiotic resources. Effects of interactions for abiotic resources were heterogeneous across strata, with negligible effects of herb-layer or coffee flower density but net positive effects of canopy trees on final fruit set. Overall effects of neighbors on coffee yield were weak, suggesting that coffee agroecosystems can be managed to maintain high plant density and diversity without sacrificing yield.Abstract in Spanish is available with online material.ResumenLas plantas polinizadas por animales interactúan con las vecinas tanto por los recursos abióticos como por la polinización, con consecuencias para la reproducción y el rendimiento de cultivos. Sin embargo, pocos estudios comparan la magnitud relativa de estos efectos, particularmente en agroecosistemas. En comunidades estratificadas verticalmente, como los agrobosques, los efectos vecinos pueden depender del estrato. Comprender los efectos netos de los vecinos en el rendimiento de cultivos es importante para gestionar agroecosistemas multifuncionales y apoyar simultáneamente la producción y la biodiversidad. Este estudio evalua los efectos de las plantas vecinas sobre la deposición de polen, la fertilización y el rendimiento en Coffea arabica en una finca de café orgánico bajo sombra con alta abundancia y diversidad de plantas no cultivadas en Chiapas, México. Evaluamos el impacto de 1) los recursos florales en tres estratos verticales (hierbas, cafetos y árboles de dosel) sobre la carga de polen del estigma (una medida de interacción para la polinización), y 2) la densidad floral y la cubierta de dosel (representantes de la competencia por recursos abióticos) sobre el rendimiento (taza de fruto final y peso por fruto), utilizando modelos de ecuaciones estructurales para evaluar el efecto relativo de cada tipo de interacción. El café compitió por la polinización con vecinos (conespecíficos y heteroespecíficos) en todos los estratos. La carga de polen influyó en la taza de fruto final, pero el efecto de la competencia vecina por la polinización fue más débil que los efectos mediados por la interacción para recursos abióticos. Los efectos de las interacciones para recursos abióticos fueron heterogéneos a través de los estratos, con efectos insignificantes de la densidad del estrato de hierba o del café, pero efectos positivos netos de los árboles del dosel en la taza de fruto final. Los efectos generales de los vecinos en el rendimiento del café fueron débiles, lo que sugiere que los agroecosistemas de café se pueden manejar para mantener una alta densidad y diversidad de plantas sin sacrificar el rendimiento.Animal-pollinated plants interact with neighbors for both abiotic resources and pollination, but few studies have compared the relative magnitude of these effects, particularly in agroecosystems. This study evaluated the effects of neighboring plants at three vertical strata (herbs, coffee bushes, and canopy trees) on pollen deposition, fertilization, and yield in coffee (Coffea arabica) in a shaded organic coffee farm with high non-crop plant abundance and diversity, using structural equation modeling. Coffee competed for pollination with neighbors (conspecifics and heterospecifics) across strata, while effects of interactions for abiotic resources were heterogeneous across strata; overall effects of neighbors on coffee yield were relatively weak, suggesting that coffee agroecosystems can be managed to maintain high plant density and diversity without sacrificing yield.
dc.publisherSage
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstructural equation modeling
dc.subject.otherMexico
dc.subject.otheragroecosystem multifunctionality
dc.subject.otherChiapas
dc.subject.otherCoffea arabica
dc.subject.otherneighborhood effects
dc.subject.otherpollinator-mediated plant interactions
dc.titleIntegrating effects of neighbor interactions for pollination and abiotic resources on coffee yield in a multi-strata agroforest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174935/1/btp13145_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174935/2/btp13145.pdf
dc.identifier.doi10.1111/btp.13145
dc.identifier.sourceBiotropica
dc.identifier.citedreferencePerfecto, I., Rice, R., & Greenberg, R. ( 1996 ). Shade coffee: A disappearing refuge for biodiversity. Bioscience, 46, 598 – 608.
dc.identifier.citedreferenceO’Brien, T. G., & Kinnaird, M. F. ( 2003 ). Caffeine and conservation. Science, 300, 587.
dc.identifier.citedreferenceOerke, E.-C. ( 2006 ). Crop losses to pests. The Journal of Agricultural Science, 144, 31 – 43.
dc.identifier.citedreferenceOsterman, J., Theodorou, P., Radzevičiūtė, R., Schnitker, P., & Paxton, R. J. ( 2021 ). Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agriculture, Ecosystems & Environment, 315, 107383.
dc.identifier.citedreferenceParadis, E., & Schliep, K. ( 2019 ). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526 – 528.
dc.identifier.citedreferencePhilpott, S. M., Uno, S., & Maldonado, J. ( 2006 ). The importance of ants and high-shade management to coffee pollination and fruit weight in Chiapas, Mexico. Biodiversity and Conservation, 15, 487 – 501.
dc.identifier.citedreferencePinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. ( 2020 ). Nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme.
dc.identifier.citedreferencePrado, S. G., Collazo, J. A., & Irwin, R. E. ( 2018 ). Resurgence of specialized shade coffee cultivation: Effects on pollination services and quality of coffee production. Agriculture, Ecosystems & Environment, 265, 567 – 575.
dc.identifier.citedreferencePrado, S. G., Collazo, J. A., Marand, M. H., & Irwin, R. E. ( 2021 ). The influence of floral resources and microclimate on pollinator visitation in an agro-ecosystem. Agriculture, Ecosystems & Environment, 307, 107196.
dc.identifier.citedreferencePrado, S. G., Collazo, J. A., Stevenson, P. C., & Irwin, R. E. ( 2019 ). A comparison of coffee floral traits under two different agricultural practices. Scientific Reports, 9, 7331.
dc.identifier.citedreferenceRoubik, D. W. ( 1993 ). Tropical pollinators in the canopy and understory: Field data and theory for stratum “preferences”. Journal of Insect Behavior, 6, 659 – 673.
dc.identifier.citedreferenceRoubik, D. W., Inoue, T., & Hamid, A. A. ( 1995 ). Canopy foraging by two tropical honeybees: Bee height fidelity and tree genetic neighborhoods. Tropics, 5, 81 – 93.
dc.identifier.citedreferenceSchmitt, L., & Perfecto, I. ( 2020 ). Who gives a flux? Synchronous flowering of Coffea arabica accelerates leaf litter decomposition. Ecosphere, 11 ( 7 ), e03186. https://doi.org/10.1002/ecs2.3186
dc.identifier.citedreferenceSoto-Pinto, L., Perfecto, I., & Caballero-Nieto, J. ( 2002 ). Shade over coffee: Its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry Systems, 55, 37 – 45.
dc.identifier.citedreferenceSoto-Pinto, L., Perfecto, I., Castillo-Hernandez, J., & Caballero-Nieto, J. ( 2000 ). Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agriculture, Ecosystems & Environment, 80, 61 – 69.
dc.identifier.citedreferenceStaver, C., Guharay, F., Monterroso, D., & Muschler, R. G. ( 2001 ). Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry Systems, 53, 151 – 170.
dc.identifier.citedreferenceStephenson, A. G. ( 1981 ). Flower and fruit abortion: Proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253 – 279.
dc.identifier.citedreferenceTamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H., & Marini, L. ( 2019 ). Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems & Environment, 280, 16 – 23.
dc.identifier.citedreferenceTrinder, C. J., Brooker, R. W., & Robinson, D. ( 2013 ). Plant ecology’s guilty little secret: Understanding the dynamics of plant competition. Functional Ecology, 27, 918 – 929.
dc.identifier.citedreferenceTully, K. L., Lawrence, D., & Scanlon, T. M. ( 2012 ). More trees less loss: Nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agriculture, Ecosystems and Environment, 161, 137 – 144.
dc.identifier.citedreferenceUlyshen, M. D., Soon, V., & Hanula, J. L. ( 2010 ). On the vertical distribution of bees in a temperate deciduous forest. Insect Conservation and Diversity, 3, 222 – 228.
dc.identifier.citedreferenceUnderwood, N., Inouye, B. D., & Hambäck, P. A. ( 2014 ). A conceptual framework for associational effects: When do neighbors matter and how would we know? The Quarterly Review of Biology, 89, 1 – 19.
dc.identifier.citedreferenceUrban-Mead, K. R., Muñiz, P., Gillung, J., Espinoza, A., Fordyce, R., van Dyke, M., McArt, S. H., & Danforth, B. N. ( 2021 ). Bees in the trees: Diverse spring fauna in temperate forest edge canopies. Forest Ecology and Management, 482, 118903.
dc.identifier.citedreferenceVisscher, P. K., & Seeley, T. D. ( 1982 ). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology, 63, 1790 – 1801.
dc.identifier.citedreferenceWinsor, J. A., Davis, L. E., & Stephenson, A. G. ( 1987 ). The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. The American Naturalist, 129, 643 – 656.
dc.identifier.citedreferenceYoung, H. J., & Young, T. P. ( 1992 ). Alternative outcomes of natural and experimental high pollen loads. Ecology, 73, 639 – 647.
dc.identifier.citedreferenceYounginger, B. S., Sirová, D., Cruzan, M. B., & Ballhorn, D. J. ( 2017 ). Is biomass a reliable estimate of plant fitness? Applications in Plant Sciences, 5, 1600094.
dc.identifier.citedreferenceZimdahl, R. L. ( 2007 ). Weed-crop competition: A review. Wiley.
dc.identifier.citedreferenceR Core Team. ( 2020 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
dc.identifier.citedreferenceRadosevich, S. R., Holt, J. S., & Ghersa, C. ( 1997 ). Weed ecology: Implications for management. Wiley.
dc.identifier.citedreferenceRonchi, C. P., Terra, A. A., & Silva, A. A. ( 2007 ). Growth and nutrient concentration in coffee root system under weed species competition. Planta Daninha, 25, 679 – 687.
dc.identifier.citedreferenceAlbor, C., García-Franco, J. G., Parra-Tabla, V., Díaz-Castelazo, C., & Arceo-Gómez, G. ( 2019 ). Taxonomic and functional diversity of the co-flowering community differentially affect Cakile edentula pollination at different spatial scales. Journal of Ecology, 107, 2167 – 2181.
dc.identifier.citedreferenceAvelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordoñez, M., & Savary, S. ( 2006 ). The intensity of a coffee rust epidemic is dependent on production situations. Ecological Modelling, 197, 431 – 447.
dc.identifier.citedreferenceBadillo-Montaño, R., Aguirre, A., & Munguía-Rosas, M. A. ( 2019 ). Pollinator-mediated interactions between cultivated papaya and co-flowering plant species. Ecology and Evolution, 9, 587 – 597.
dc.identifier.citedreferenceBänsch, S., Tscharntke, T., Ratnieks, F. L. W., Härtel, S., & Westphal, C. ( 2020 ). Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agriculture, Ecosystems & Environment, 291, 106792.
dc.identifier.citedreferenceBeer, J., Muschler, R., Kass, D., & Somarriba, E. ( 1997 ). Shade management in coffee and cacao plantations. Agroforestry Systems, 38, 139 – 164.
dc.identifier.citedreferenceBos, M. M., Veddeler, D., Bogdanski, A. K., Klein, A.-M., Tscharntke, T., Steffan-Dewenter, I., & Tylianakis, J. M. ( 2007 ). Caveats to quantifying ecosystem services: Fruit abortion blurs benefits from crop pollination. Ecological Applications, 17, 1841 – 1849.
dc.identifier.citedreferenceBraun, J., & Lortie, C. J. ( 2019 ). Finding the bees knees: A conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation. Perspectives in Plant Ecology, Evolution and Systematics, 36, 33 – 40.
dc.identifier.citedreferenceBruckman, D., & Campbell, D. R. ( 2014 ). Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia, 176, 465 – 476.
dc.identifier.citedreferenceCampanha, M. M., Santos, R. H. S., de Freitas, G. B., Martinez, H. E. P., Garcia, S. L. R., & Finger, F. L. ( 2004 ). Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agroforestry Systems, 63, 75 – 82.
dc.identifier.citedreferenceCruzan, M. B., & Barrett, S. C. H. ( 1993 ). Contribution of cryptic incompatibility to the mating system of Eichhornia paniculata (Pontederiaceae). Evolution, 47, 925 – 934.
dc.identifier.citedreferenceCruzan, M. B., & Barrett, S. C. H. ( 1996 ). Postpollination mechanisms influencing mating patterns and fecundity: An example from Eichhornia paniculata. The American Naturalist, 147, 576 – 598.
dc.identifier.citedreferenceDaMatta, F. M. ( 2004 ). Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research, 86, 99 – 114.
dc.identifier.citedreferenceDaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. ( 2007 ). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19, 485 – 510.
dc.identifier.citedreferenceDamgaard, C., & Weiner, J. ( 2017 ). It’s about time: A critique of macroecological inferences concerning plant competition. Trends in Ecology & Evolution, 32, 86 – 87.
dc.identifier.citedreferenceDanner, N., Molitor, A. M., Schiele, S., Härtel, S., & Steffan-Dewenter, I. ( 2016 ). Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecological Applications, 26, 1920 – 1929.
dc.identifier.citedreferenceDe Beenhouwer, M., Aerts, R., & Honnay, O. ( 2013 ). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems & Environment, 175, 1 – 7.
dc.identifier.citedreferenceDuffy, K. J., & Stout, J. C. ( 2011 ). Effects of conspecific and heterospecific floral density on the pollination of two related rewarding orchids. Plant Ecology, 212, 1397 – 1406.
dc.identifier.citedreferenceEscobar-Ramírez, S., Grass, I., Armbrecht, I., & Tscharntke, T. ( 2019 ). Biological control of the coffee berry borer: Main natural enemies, control success, and landscape influence. Biological Control, 136, 103992.
dc.identifier.citedreferenceEshetu, T., & Kebede, T. ( 2015 ). Effect of weed management methods on yield and physical quality of coffee at Gera, Jimma zone, south West Ethiopia. Journal of Resources Development and Management, 11, 82 – 89.
dc.identifier.citedreferenceEssenberg, C. J. ( 2013 ). Scale-dependent shifts in the species composition of flower visitors with changing floral density. Oecologia, 171, 187 – 196.
dc.identifier.citedreferenceFisher, K., Gonthier, D. J., Ennis, K. K., & Perfecto, I. ( 2017 ). Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems. Ecological Applications, 27, 1815 – 1826.
dc.identifier.citedreferenceFitch, G., Gonzalez, J., Oana, A. M., Oliver, M., & Vandermeer, J. ( 2022 ). Data from: Integrating effects of neighbor interactions for pollination and abiotic resources on coffee yield in a multi-strata agroforest. Dryad Digital Repository. https://doi.org/10.5061/dryad.v6wwpzgzw
dc.identifier.citedreferenceFitch, G., & Vandermeer, J. H. ( 2020 ). Light availability influences the intensity of nectar robbery and its effects on reproduction in a tropical shrub via multiple pathways. American Journal of Botany, 107, 1 – 10.
dc.identifier.citedreferenceFox, J., & Weisberg, S. ( 2019 ). An {R} companion to applied regression ( 3rd ed. ). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
dc.identifier.citedreferenceGoldberg, D. E., & Barton, A. M. ( 1992 ). Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. American Naturalist, 139, 771 – 801.
dc.identifier.citedreferenceGonthier, D. J., Dominguez, G. M., Witter, J. D., Spongberg, A. L., & Philpott, S. M. ( 2013 ). Bottom-up effects of soil quality on a coffee arthropod interaction web. Ecosphere, 4, art107.
dc.identifier.citedreferenceGurevitch, J., Morrow, L. L., Wallace, A., & Walsh, J. S. ( 1992 ). A meta-analysis of competition in field experiments. American Naturalist, 140, 539 – 572.
dc.identifier.citedreferenceHegland, S. J., & Boeke, L. ( 2006 ). Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecological Entomology, 31, 532 – 538.
dc.identifier.citedreferenceHipólito, J., Boscolo, D., & Viana, B. F. ( 2018 ). Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture, Ecosystems & Environment, 256, 218 – 225.
dc.identifier.citedreferenceHolzschuh, A., Dormann, C. F., Tscharntke, T., & Steffan-Dewenter, I. ( 2011 ). Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society B, 278, 3444 – 3451.
dc.identifier.citedreferenceIverson, A. L., Gonthier, D. J., Pak, D., Ennis, K. K., Burnham, R. J., Perfecto, I., Ramos Rodriguez, M., & Vandermeer, J. H. ( 2019 ). A multifunctional approach for achieving simultaneous biodiversity conservation and farmer livelihood in coffee agroecosystems. Biological Conservation, 238, 108179.
dc.identifier.citedreferenceKearns, C. A., & Inouye, D. W. ( 1993 ). Techniques for pollination biologists. University Press of Colorado.
dc.identifier.citedreferenceKlein, A.-M., Cunningham, S. A., Bos, M., & Steffan-Dewenter, I. ( 2008 ). Advances in pollination ecology from tropical plantation crops. Ecology, 89, 935 – 943.
dc.identifier.citedreferenceKlein, A.-M., Hendrix, S. D., Clough, Y., Scofield, A., & Kremen, C. ( 2015 ). Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology, 17, 201 – 208.
dc.identifier.citedreferenceKlein, A. M., Steffan-Dewenter, I., & Tscharntke, T. ( 2003 ). Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). American Journal of Botany, 90, 153 – 157.
dc.identifier.citedreferenceLander, T. A., Bebber, D. P., Choy, C. T. L., Harris, S. A., & Boshier, D. H. ( 2011 ). The Circe principle explains how resource-rich land can waylay pollinators in fragmented landscapes. Current Biology, 21, 1302 – 1307.
dc.identifier.citedreferenceLau, T.-C., Lu, X., Koide, R. T., & Stephenson, A. G. ( 1995 ). Effects of soil fertility and mycorrhizal infection on pollen production and pollen grain size of Cucurbita pepo (Cucurbitaceae). Plant, Cell & Environment, 18, 169 – 177.
dc.identifier.citedreferenceLefcheck, J. S. ( 2016 ). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573 – 579.
dc.identifier.citedreferenceLin, B. B. ( 2009 ). Coffee ( Café arabica var. Bourbon) fruit growth and development under varying shade levels in the Soconusco region of Chiapas, Mexico. Journal of Sustainable Agriculture, 33, 51 – 65.
dc.identifier.citedreferenceLópez-Bravo, D. F., E., de Virginio-Filho, M., & Avelino, J. ( 2012 ). Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Protection, 38, 21 – 29.
dc.identifier.citedreferenceLundin, O., Ward, K. L., Artz, D. R., Boyle, N. K., Pitts-Singer, T. L., & Williams, N. M. ( 2017 ). Wildflower plantings do not compete with neighboring almond orchards for pollinator visits. Environmental Entomology, 46, 559 – 564.
dc.identifier.citedreferenceMachado, A. C. P., Barônio, G. J., de Oliveira, F. F., Garcia, C. T., & Rech, A. R. ( 2021 ). Does a coffee plantation host potential pollinators when it is not flowering? Bee distribution in an agricultural landscape with high biological diversity in the Brazilian campo Rupestre. Journal of the Science of Food and Agriculture, 101, 2345 – 2354.
dc.identifier.citedreferenceMcKone, M. J. ( 1989 ). Intraspecific variation in pollen yield in bromegrass (Poaceae: Bromus ). American Journal of Botany, 76, 231 – 237.
dc.identifier.citedreferenceMitchell, R. J. ( 1997 ). Effects of pollen quantity on progeny vigor: Evidence from the desert mustard Lesquerella fendleri. Evolution, 51, 1679 – 1684.
dc.identifier.citedreferenceMitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M., & Karron, J. D. ( 2009 ). New frontiers in competition for pollination. Annals of Botany, 103, 1403 – 1413.
dc.identifier.citedreferenceMoraima García, S., Cañizares, A., Salcedo, F., & Guillén, L. ( 2000 ). A contribution to determine critical levels of weed interference in coffee crops of Moagas state, Venezuela. Bioagro, 12, 63 – 70.
dc.identifier.citedreferenceMoreaux, C., Meireles, D. A. L., Sonne, J., Badano, E. I., Classen, A., González-Chaves, A., Hipólito, J., Klein, A. M., Maruyama, P. K., Metzger, J. P., Philpott, S. M., Rahbek, C., Saturni, F. T., Sritongchuay, T., Tscharntke, T., Uno, S., Vergara, C. H., Viana, B. F., Strange, N., & Dalsgaard, B. ( 2022 ). The value of biotic pollination and dense forest for fruit set of arabica coffee: A global assessment. Agriculture, Ecosystems & Environment, 323, 107680.
dc.identifier.citedreferenceMulcahy, D. L. ( 1971 ). A correlation between gametophytic and sporophytic characteristics in Zea mays L. Science, 171, 1155 – 1156.
dc.identifier.citedreferenceNicholson, C. C., Ricketts, T. H., Koh, I., Smith, H. G., Lonsdorf, E. V., & Olsson, O. ( 2019 ). Flowering resources distract pollinators from crops: Model predictions from landscape simulations. Journal of Applied Ecology, 56, 618 – 628.
dc.identifier.citedreferenceNiesenbaum, R. A., & Casper, B. B. ( 1994 ). Pollen tube numbers and selective fruit maturation in Lindera benzoin. The American Naturalist, 144, 184 – 191.
dc.identifier.citedreferenceNjoroge, J. M. ( 1994 ). Weeds and weed control in coffee. Ex Agric, 30, 421 – 429.
dc.identifier.citedreferenceNjoroge, J. M., & Kimemia, J. K. ( 1990 ). A comparison of different weed control methods in Kenya. Kenya Coffee, 55, 863 – 870.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.