Show simple item record

A road map for in vivo evolution experiments with blood-borne parasitic microbes

dc.contributor.authorRodríguez-Pastor, Ruth
dc.contributor.authorShafran, Yarden
dc.contributor.authorKnossow, Nadav
dc.contributor.authorGutiérrez, Ricardo
dc.contributor.authorHarrus, Shimon
dc.contributor.authorZaman, Luis
dc.contributor.authorLenski, Richard E.
dc.contributor.authorBarrick, Jeffrey E.
dc.contributor.authorHawlena, Hadas
dc.date.accessioned2022-10-05T15:52:30Z
dc.date.available2023-12-05 11:52:28en
dc.date.available2022-10-05T15:52:30Z
dc.date.issued2022-11
dc.identifier.citationRodríguez-Pastor, Ruth ; Shafran, Yarden; Knossow, Nadav; Gutiérrez, Ricardo ; Harrus, Shimon; Zaman, Luis; Lenski, Richard E.; Barrick, Jeffrey E.; Hawlena, Hadas (2022). "A road map for in vivo evolution experiments with blood- borne parasitic microbes." Molecular Ecology Resources (8): 2843-2859.
dc.identifier.issn1755-098X
dc.identifier.issn1755-0998
dc.identifier.urihttps://hdl.handle.net/2027.42/174942
dc.description.abstractLaboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBartonella spp.
dc.subject.otherexperimental evolution
dc.subject.otherhost–parasite adaptation
dc.subject.otherin vivo experiments
dc.subject.othermicrobial pathogens
dc.subject.otherpopulation bottlenecks
dc.subject.othersequential passages
dc.titleA road map for in vivo evolution experiments with blood-borne parasitic microbes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174942/1/men13649.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174942/2/men13649_am.pdf
dc.identifier.doi10.1111/1755-0998.13649
dc.identifier.sourceMolecular Ecology Resources
dc.identifier.citedreferenceMehta, H., Prater, A., & Shamoo, Y. ( 2018 ). Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance. The Journal of Antibiotics, 71, 279 – 286. https://doi.org/10.1038/ja.2017.108
dc.identifier.citedreferenceMackinnon, M. J., Bell, A., & Read, A. F. ( 2005 ). The effects of mosquito transmission and population bottlenecking on virulence, multiplication rate and rosetting in rodent malaria. International Journal for Parasitology, 35 ( 2 ), 145 – 153. https://doi.org/10.1016/j.ijpara.2004.11.011
dc.identifier.citedreferenceMackinnon, M. J., & Read, A. F. ( 1999 ). Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution, 53 ( 3 ), 689 – 703. https://doi.org/10.1111/j.1558-5646.1999.tb05364.x
dc.identifier.citedreferenceMarignac, G., Barrat, F., Chomel, B., Vayssier-Taussat, M., Gandoin, C., Bouillin, C., & Boulouis, H. J. ( 2010 ). Murine model for Bartonella birtlesii infection: New aspects. Comparative Immunology, Microbiology and Infectious Diseases, 33 ( 2 ), 95 – 107. https://doi.org/10.1016/j.cimid.2008.07.011
dc.identifier.citedreferenceMarvig, R. L., Damkiær, S., Khademi, S. M., Markussen, T. M., Molin, S., & Jelsbak, L. ( 2014 ). Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio, 5 ( 3 ), e00966 – e00914. https://doi.org/10.1128/mBio.00966-14
dc.identifier.citedreferenceMeghari, S., Rolain, J. M., Grau, G. E., Platt, E., Barrassi, L., Mège, J. L., & Raoult, D. ( 2006 ). Antiangiogenic effect of erythromycin: An in vitro model of Bartonella quintana infection. The Journal of Infectious Diseases, 193 ( 3 ), 380 – 386. https://doi.org/10.1086/499276
dc.identifier.citedreferenceMichelitsch, A., Fast, C., Sick, F., Tews, B. A., Stiasny, K., Bestehorn-Willmann, M., Dobler, G., Beer, M., & Wernike, K. ( 2021 ). Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles ( Myodes glareolus ). Ticks and Tick-borne Diseases, 12 ( 4 ), 101693. https://doi.org/10.1016/j.ttbdis.2021.101693
dc.identifier.citedreferenceMoncla, L. H., Bedford, T., Dussart, P., Horm, S. V., Rith, S., Buchy, P., Karlsson, E. A., Li, L., Liu, Y., Zhu, H., Guan, Y., Friedrich, T. C., & Horwood, P. F. ( 2020 ). Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. PLoS Pathogens, 16 ( 1 ), e1008191. https://doi.org/10.1371/journal.ppat.1008191
dc.identifier.citedreferenceMook-Kanamori, B., Geldhoff, M., Troost, D., van der Poll, T., & van de Beek, D. ( 2012 ). Characterization of a pneumococcal meningitis mouse model. BMC Infectious Diseases, 12, 71. https://doi.org/10.1186/1471-2334-12-71
dc.identifier.citedreferenceMorick, D., Krasnov, B. R., Khokhlova, I. S., Gottlieb, Y., & Harrus, S. ( 2011 ). Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae). Molecular Ecology, 20 ( 13 ), 2864 – 2870. https://doi.org/10.1111/j.1365-294X.2011.05033.x
dc.identifier.citedreferenceMorton, D. B., Jennings, M., Buckwell, A., Ewbank, R., Godfrey, C., Holgate, B., Inglis, I., James, R., Page, C., Sharman, I., Verschoyle, R., Westall, L., Wilson, A. B., & Refinement, J. W. G. O. ( 2001 ). Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on Refinement. British veterinary association animal welfare foundation/Fund for the Replacement of animals in medical experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Laboratory Animals, 35 ( 1 ), 1 – 14. https://doi.org/10.1258/0023677011911345
dc.identifier.citedreferenceNilsson, A. I., Koskiniemi, S., Eriksson, S., Kugelberg, E., Hinton, J. C., & Andersson, D. I. ( 2005 ). Bacterial genome size reduction by experimental evolution. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 34 ), 12112 – 12116. https://doi.org/10.1073/pnas.0503654102
dc.identifier.citedreferenceOu, F., McGoverin, C., Swift, S., & Vanholsbeeck, F. ( 2017 ). Absolute bacterial cell enumeration using flow cytometry. Journal of Applied Microbiology, 123 ( 2 ), 464 – 477. https://doi.org/10.1111/jam.13508
dc.identifier.citedreferencePalinauskas, V., Valkiūnas, G., Bolshakov, C. V., & Bensch, S. ( 2008 ). Plasmodium relictum (lineage P-SGS1): Effects on experimentally infected passerine birds. Experimental Parasitology, 120 ( 4 ), 372 – 380. https://doi.org/10.1016/j.exppara.2008.09.001
dc.identifier.citedreferencePatil, D. R., Hundekar, S. L., & Arankalle, V. A. ( 2012 ). Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Microbes and Infection, 14 ( 5 ), 457 – 469. https://doi.org/10.1016/j.micinf.2011.12.008
dc.identifier.citedreferencePoon, A. F., Swenson, L. C., Dong, W. W., Deng, W., Kosakovsky Pond, S. L., Brumme, Z. L., Mullins, J. I., Richman, D. D., Harrigan, P. R., & Frost, S. D. ( 2010 ). Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Molecular Biology and Evolution, 27 ( 4 ), 819 – 832. https://doi.org/10.1093/molbev/msp289
dc.identifier.citedreferenceRegnath, T., Mielke, M. E. A., Arvand, M., & Hahn, H. ( 1998 ). Murine model of Bartonella henselae infection in the immunocompetent host. Infection and Immunity, 66 ( 11 ), 5534 – 5536. https://doi.org/10.1128/IAI.66.11.5534-5536.1998
dc.identifier.citedreferenceRejmanek, D., Foley, P., Barbet, A., & Foley, J. ( 2012 ). Evolution of antigen variation in the tick-borne pathogen Anaplasma phagocytophilum. Molecular Biology and Evolution, 29 ( 1 ), 391 – 400. https://doi.org/10.1093/molbev/msr229
dc.identifier.citedreferenceRiemersma, K. K., Jaeger, A. S., Crooks, C. M., Braun, K. M., Weger-Lucarelli, J., Ebel, G. D., Friedrich, T. C., & Aliota, M. T. ( 2021 ). Rapid evolution of enhanced Zika virus virulence during direct vertebrate transmission chains. Journal of Virology, 95 ( 8 ), e02218 – e02220. https://doi.org/10.1128/JVI.02218-20
dc.identifier.citedreferenceRiess, T., Raddatz, G., Linke, D., Schäfer, A., & Kempf, V. A. ( 2007 ). Analysis of Bartonella adhesin a expression reveals differences between various B. henselae strains. Infection and Immunity, 75 ( 1 ), 35 – 43. https://doi.org/10.1128/IAI.00963-06
dc.identifier.citedreferenceRobinson, C. D., Klein, H. S., Murphy, K. D., Parthasarathy, R., Guillemin, K., & Bohannan, B. J. M. ( 2018 ). Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biology, 16 ( 12 ), e2006893. https://doi.org/10.1371/journal.pbio.2006893
dc.identifier.citedreferenceSchmitt, K., Curlin, J., Remling-Mulder, L., Moriarty, R., Goff, K., O’Connor, S., Stenglein, M., Marx, P., & Akkina, R. ( 2020 ). Cross-species transmission and evolution of SIV chimpanzee progenitor viruses toward HIV-1 in humanized mice. Frontiers in Microbiology, 11, 1889. https://doi.org/10.3389/fmicb.2020.01889
dc.identifier.citedreferenceSinha, R., Malar, M., Raghwan, Das, S., Das, S., Shadab, M., Chowdhury, R., Tripathy, S., & Ali, N. ( 2018 ). Genome plasticity in cultured Leishmania donovani: Comparison of early and late passages. Frontiers in Microbiology, 9, 1279. https://doi.org/10.3389/fmicb.2018.01279
dc.identifier.citedreferenceSprouffske, K., Aguilar-Rodríguez, J., Sniegowski, P., & Wagner, A. ( 2018 ). High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genetics, 14 ( 4 ), e1007324. https://doi.org/10.1371/journal.pgen.1007324
dc.identifier.citedreferenceTait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M. R., Appelbaum, P. C., & Sutcliffe, J. ( 2000 ). Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrobial Agents and Chemotherapy, 44 ( 8 ), 2118 – 2125. https://doi.org/10.1128/AAC.44.8.2118-2125.2000
dc.identifier.citedreferenceTian, D., Uda, A., Park, E. S., Hotta, A., Fujita, O., Yamada, A., Hirayama, K., Hotta, K., Koyama, Y., Azaki, M., & Morikawa, S. ( 2018 ). Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiology and Immunology, 62 ( 1 ), 24 – 33. https://doi.org/10.1111/1348-0421.12555
dc.identifier.citedreferenceTrunk, T., Khalil, H. S., & Leo, J. C. ( 2018 ). Bacterial autoaggregation. AIMS Microbiology, 41 ( 1 ), 140 – 164. https://doi.org/10.3934/microbiol.2018.1.140
dc.identifier.citedreferenceVan den Bergh, B., Swings, T., Fauvart, M., & Michiels, J. ( 2018 ). Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiology and Molecular Biology Reviews, 82 ( 3 ), e00008 – e00018. https://doi.org/10.1128/MMBR.00008-18
dc.identifier.citedreferenceWahl, L. M., Gerrish, P. J., & Saika-Voivod, I. ( 2002 ). Evaluating the impact of population bottlenecks in experimental evolution. Genetics, 162 ( 2 ), 961 – 971. https://doi.org/10.1093/genetics/162.2.961
dc.identifier.citedreferenceWerner, J. A., Kasten, R. W., Feng, S., Sykes, J. E., Hodzic, E., Salemi, M. R., Barthold, S. W., & Chomel, B. ( 2007 ). Experimental infection of domestic cats with passaged genotype I Bartonella henselae. Veterinary Microbiology, 122 ( 3–4 ), 290 – 297. https://doi.org/10.1016/j.vetmic.2007.01.018
dc.identifier.citedreferenceZhou, W., Spoto, M., Hardy, R., Guan, C., Fleming, E., Larson, P. J., Brown, J. S., & Oh, J. ( 2020 ). Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell, 180 ( 3 ), 454 – 470.e418. https://doi.org/10.1016/j.cell.2020.01.006
dc.identifier.citedreferenceCoffey, L. L., Vasilakis, N., Brault, A. C., Powers, A. M., Tripet, F., & Weaver, S. C. ( 2008 ). Arbovirus evolution in vivo is constrained by host alternation. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 19 ), 6970 – 6975. https://doi.org/10.1073/pnas.0712130105
dc.identifier.citedreferenceAgha, R., Gross, A., Rohrlack, T., & Wolinska, J. ( 2018 ). Adaptation of a chytrid parasite to its cyanobacterial host is hampered by host intraespecific diverdity. Frontiers in Microbiology, 9, 921. https://doi.org/10.3389/fmicb.2018.00921
dc.identifier.citedreferenceAhmed, N. H. ( 2014 ). Cultivation of parasites. Tropical Parasitology, 4 ( 2 ), 80 – 89. https://doi.org/10.4103/2229-5070.138534
dc.identifier.citedreferenceAlizon, S., de Roode, J. C., & Michalakis, Y. ( 2013 ). Multiple infections and the evolution of virulence. Ecology Letters, 16 ( 4 ), 556 – 567. https://doi.org/10.1111/ele.12076
dc.identifier.citedreferenceBarrick, J. E., & Lenski, R. E. ( 2013 ). Genome dynamics during experimental evolution. Nature Reviews. Genetics, 14 ( 12 ), 827 – 839. https://doi.org/10.1038/nrg3564
dc.identifier.citedreferenceBashey, F., Morran, L. T., & Lively, C. M. ( 2007 ). Co-infection, kin selection, and the rate of host exploitation by a parasitic nematode. Evolutionary Ecology Research, 9 ( 6 ), 947 – 958.
dc.identifier.citedreferenceBastos, T., Faria, A. M., Cavalcante, A., Madrid, D., Zapa, D., Nicaretta, J. E., Cruvinel, L. B., Heller, L. M., Couto, L., Rodrigues, D. C., Ferreira, L. L., Soares, V. E., Cadioli, F. A., & Lopes, W. ( 2020 ). Infection capacity of Trypanosoma vivax experimentally inoculated through different routes in bovines with latent Anaplasma marginale. Experimental Parasitology, 211, 107861. https://doi.org/10.1016/j.exppara.2020.107861
dc.identifier.citedreferenceBatstone, R. T., O’Brien, A. M., Harrison, T. L., & Frederickson, M. E. ( 2020 ). Experimental evolution makes microbes more cooperative with their local host genotype. Science, 370 ( 6515 ), 476 – 478. https://doi.org/10.1126/science.abb7222
dc.identifier.citedreferenceBellone, R., Lequime, S., Jupille, H., Göertz, G. P., Aubry, F., Mousson, L., Piorkowski, G., Yen, P. S., Gabiane, G., Vazeille, M., Sakuntabhai, A., Pijlman, G. P., de Lamballerie, X., Lambrechts, L., & Failloux, A. B. ( 2020 ). Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection. Scientific Reports, 10 ( 1 ), 18404. https://doi.org/10.1038/s41598-020-75042-4
dc.identifier.citedreferenceBen-Ami, F., Rigaud, T., & Ebert, D. ( 2011 ). The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Journal of Evolutionary Biology, 24 ( 6 ), 1307 – 1316. https://doi.org/10.1111/j.1420-9101.2011.02264.x
dc.identifier.citedreferenceBlount, Z. D., Borland, C. Z., & Lenski, R. E. ( 2008 ). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, 105 ( 23 ), 7899 – 7906. https://doi.org/10.1073/pnas.0803151105
dc.identifier.citedreferenceBlount, Z. D., Lenski, R. E., & Losos, J. B. ( 2018 ). Contingency and determinism in evolution: Replaying life’s tape. Science (New York, N.Y.), 362 ( 6415 ), eaam5979. https://doi.org/10.1126/science.aam5979
dc.identifier.citedreferenceBrockhurst, M. A., Colegrave, N., & Rozen, D. E. ( 2011 ). Next-generation sequencing as a tool to study microbial evolution. Molecular Ecology, 25 ( 5 ), 972 – 980. https://doi.org/10.1111/j.1365-294X.2010.04835.x
dc.identifier.citedreferenceBrockhurst, M. A., & Koskella, B. ( 2013 ). Experimental coevolution of species interactions. Trends in Ecology & Evolution, 28 ( 6 ), 367 – 375. https://doi.org/10.1016/j.tree.2013.02.009
dc.identifier.citedreferenceCiota, A. T., Jia, Y., Payne, A. F., Jerzak, G., Davis, L. J., Young, D. S., Ehrbar, D., & Kramer, L. D. ( 2009 ). Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and chickens reveals evolutionarily significant virus characteristics. PLoS One, 4, e7876. https://doi.org/10.1371/journal.pone.0007876
dc.identifier.citedreferenceConlan, J. W., Chen, W., Shen, H., Webb, A., & KuoLee, R. ( 2003 ). Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: Bacteriologic and histopathologic studies. Microbial Pathogenesis, 34 ( 5 ), 239 – 248. https://doi.org/10.1016/s0882-4010(03)00046-9
dc.identifier.citedreferenceCooper, T. F. ( 2007 ). Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biology, 5 ( 9 ), e225. https://doi.org/10.1371/journal.pbio.0050225
dc.identifier.citedreferenceCornwall, D. H., Kubinak, J. L., Zachary, E., Stark, D. L., Seipel, D., & Potts, W. K. ( 2018 ). Experimental manipulation of population-level MHC diversity controls pathogen virulence evolution in Mus musculus. Journal of Evolutionary Biology, 31, 314 – 322. https://doi.org/10.1111/jeb.13225
dc.identifier.citedreferenceCuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P., & Elena, S. F. ( 2015 ). Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Molecular Biology and Evolution, 32 ( 5 ), 1132 – 1147. https://doi.org/10.1093/molbev/msv028
dc.identifier.citedreferenceCulyba, M. J., & Van Tyne, D. ( 2021 ). Bacterial evolution during human infection: Adapt and live or adapt and die. PLoS Pathogens, 17 ( 9 ), e1009872. https://doi.org/10.1371/journal.ppat.1009872
dc.identifier.citedreferenceDavies, R. S., Madigan, J. E., Hodzic, E., Borjesson, D. L., & Dumler, J. S. ( 2011 ). Dexamethasone-induced cytokine changes associated with diminished disease severity in horses infected with Anaplasma phagocytophilum. Clinical and Vaccine Immunology: CVI, 18 ( 11 ), 1962 – 1968. https://doi.org/10.1128/CVI.05034-11
dc.identifier.citedreferencede Roode, J. C., Pansini, R., Cheesman, S. J., Helinski, M. E., Huijben, S., Wargo, A. R., Bell, A. S., Chan, B. H., Walliker, D., & Read, A. F. ( 2005 ). Virulence and competitive ability in genetically diverse malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 21 ), 7624 – 7628. https://doi.org/10.1073/pnas.0500078102
dc.identifier.citedreferenceDeardorff, E. R., Fitzpatrick, K. A., Jerzak, G. V., Shi, P. Y., Kramer, L. D., & Ebel, G. D. ( 2011 ). West Nile virus experimental evolution in vivo and the trade-off hypothesis. PLoS Pathogens, 7 ( 11 ), e1002335. https://doi.org/10.1371/journal.ppat.1002335
dc.identifier.citedreferenceDettman, J. R., Rodrigue, N., Melnyk, A. H., Wong, A., Bailey, S. F., & Kassen, R. ( 2012 ). Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Molecular Ecology, 21 ( 9 ), 2058 – 2077. https://doi.org/10.1111/j.1365-294X.2012.05484.x
dc.identifier.citedreferenceDiard, M., & Hardt, W. D. ( 2017 ). Basic processes in salmonella -host interactions: Within-host evolution and the transmission of the virulent genotype. Microbiology spectrum, 5 ( 5 ). https://doi.org/10.1128/microbiolspec.MTBP-0012-2016
dc.identifier.citedreferenceDuneau, D., Luijckx, P., Ruder, L. F., & Ebert, D. ( 2012 ). Sex-specific effects of a parasite evolving in a female-biased host population. BMC Biololgy, 10, 104. https://doi.org/10.1186/1741-7007-10-104
dc.identifier.citedreferenceEbert, D. ( 1998 ). Experimental evolution of parasites. Science, 282 ( 5393 ), 1432 – 1435. https://doi.org/10.1126/science.282.5393.1432
dc.identifier.citedreferenceEidelman, A., Cohen, C., Navarro-Castilla, Á., Filler, S., Gutiérrez, R., Bar-Shira, E., Shahar, N., Garrido, M., Halle, S., Romach, Y., Barja, I., Tasker, S., Harrus, S., Friedman, A., & Hawlena, H. ( 2019 ). The dynamics between limited-term and lifelong coinfecting bacterial parasites in wild rodent hosts. Journal of Experimental Biology, 222, jeb203562. https://doi.org/10.1242/jeb.203562
dc.identifier.citedreferenceFish, I., Stenfeldt, C., Palinski, R. M., Pauszek, S. J., & Arzt, J. ( 2020 ). Into the deep (sequence) of the foot-and-mouth disease virus gene pool: Bottlenecks and adaptation during infection in naïve and vaccinated cattle. Pathogens, 9 ( 3 ), 208. https://doi.org/10.3390/pathogens9030208
dc.identifier.citedreferenceGaunt, S. D., Corstvet, R. E., Berry, C. M., & Brennan, B. ( 1996 ). Isolation of Ehrlichia canis from dogs following subcutaneous inoculation. Journal of Clinical Microbiology, 34 ( 6 ), 1429 – 1432. https://doi.org/10.1128/jcm.34.6.1429-1432.1996
dc.identifier.citedreferenceGenestet, C., Hodille, E., Barbry, A., Berland, J. L., Hoffmann, J., Westeel, E., Bastian, F., Guichardant, M., Venner, S., Lina, G., Ginevra, C., Ader, F., Goutelle, S., & Dumitrescu, O. ( 2021 ). Rifampicin exposure reveals within-host Mycobacterium tuberculosis diversity in patients with delayed culture conversion. PLoS Pathogens, 17 ( 6 ), e1009643. https://doi.org/10.1371/journal.ppat.1009643
dc.identifier.citedreferenceGiraud, T., Koskella, B., & Laine, A. L. ( 2017 ). Introduction: Microbial local adaptation: Insights from natural populations, genomics and experimental evolution. Molecular Ecology, 26 ( 7 ), 1703 – 1710. https://doi.org/10.1111/mec.14091
dc.identifier.citedreferenceGonzález, R., Butkovic, A., & Elena, S. F. ( 2019 ). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus evolution, 5 ( 2 ), vez024. https://doi.org/10.1093/ve/vez024
dc.identifier.citedreferenceGutiérrez, R., Cohen, C., Flatau, R., Marcos-Hadad, E., Garrido, M., Halle, S., Nachum-Biala, Y., Covo, S., Hawlena, H., & Harrus, S. ( 2018 ). Untangling the knots: Co-infection and diversity of Bartonella from wild gerbils and their associated fleas. Molecular Ecology, 27 ( 23 ), 4787 – 4807. https://doi.org/10.1111/mec.14906
dc.identifier.citedreferenceGutiérrez, R., Markus, B., Marques, C., de Sousa, K., Marcos-Hadad, E., Mugasimangalam, R. C., Nachum-Biala, Y., Hawlena, H., Covo, S., & Harrus, S. ( 2018 ). Prophage-driven genomic structural changes promote Bartonella vertical evolution. Genome Biology and Evolution, 10 ( 11 ), 3089 – 3103. https://doi.org/10.1093/gbe/evy236
dc.identifier.citedreferenceHall, A. R., De Vos, D., Friman, V. P., Pirnay, J. P., & Buckling, A. ( 2012 ). Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Applied and Environmental Microbiology, 78 ( 16 ), 5646 – 5652. https://doi.org/10.1128/AEM.00757-12
dc.identifier.citedreferenceHart, S. P., Turcotte, M. M., & Levine, J. M. ( 2019 ). Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 116, 2112 – 2117. https://doi.org/10.1073/pnas.1816298116
dc.identifier.citedreferenceHernandez, C. A., & Koskella, B. ( 2019 ). Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system*. Evolution, 73 ( 12 ), 2461 – 2475. https://doi.org/10.1111/evo.13833
dc.identifier.citedreferenceHindré, T., Knibbe, C., Beslon, G., & Schneider, D. ( 2012 ). New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nature Reviews. Microbiology, 10 ( 5 ), 352 – 365. https://doi.org/10.1038/nrmicro2750
dc.identifier.citedreferenceHoang, K. L., Morran, L. T., & Gerardo, N. M. ( 2016 ). Experimental evolution as an underutilized tool for studying beneficial animal-microbe interactions. Frontiers in Microbiology, 7, 1444. https://doi.org/10.3389/fmicb.2016.01444
dc.identifier.citedreferenceHong, J., Li, Y., Hua, X., Bai, Y., Wang, C., Zhu, C., Du, Y., Yang, Z., & Yuan, C. ( 2017 ). Lymphatic circulation disseminates Bartonella infection into bloodstream. The Journal of Infectious Diseases, 215 ( 2 ), 303 – 311. https://doi.org/10.1093/infdis/jiw526
dc.identifier.citedreferenceIzutsu, M., Lake, D. M., Matson, Z. W. D., Dodson, J. P., & Lenski, R. E. ( 2021 ). Effects of periodic bottlenecks on the dynamics of adaptive evolution in microbial populations., bioRxiv, 12.29.474457. https://doi.org/10.1101/2021.12.29.474457
dc.identifier.citedreferenceJerzak, G. V., Bernard, K., Kramer, L. D., Shi, P. Y., & Ebel, G. D. ( 2007 ). The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology, 360 ( 2 ), 469 – 476. https://doi.org/10.1016/j.virol.2006.10.029
dc.identifier.citedreferenceJerzak, G. V., Brown, I., Shi, P. Y., Kramer, L. D., & Ebel, G. D. ( 2008 ). Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology, 374 ( 2 ), 256 – 260. https://doi.org/10.1016/j.virol.2008.02.032
dc.identifier.citedreferenceJones, S. R., Palmen, M., & van Muiswinkel, W. B. ( 1993 ). Effects of inoculum route and dose on the immune response of common carp, Cyprinus carpio to the blood parasite. Trypanoplasma borreli. Veterinary Immunology and Immunopathology, 36 ( 4 ), 369 – 378. https://doi.org/10.1016/0165-2427(93)90032-y
dc.identifier.citedreferenceKarve, S. M., Bhave, D., Nevgi, D., & Dey, S. ( 2016 ). Escherichia coli populations adapt to complex, unpredictable fluctuations by minimizing trade-offs across environments. Journal of Evolutionary Biology, 29 ( 12 ), 2545 – 2555. https://doi.org/10.1111/jeb.12972
dc.identifier.citedreferenceKawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. ( 2012 ). Experimental evolution. Trends in Ecology & Evolution, 27 ( 10 ), 547 – 560. https://doi.org/10.1016/j.tree.2012.06.001
dc.identifier.citedreferenceKoprowski, H., Jervis, G. A., & Norton, T. W. ( 1952 ). Immune responses in human volunteers upon oral administration of a rodent-adapted strain of poliomyelitis virus. American Journal of Hygiene, 55 ( 1 ), 108 – 124. https://doi.org/10.1093/oxfordjournals.aje.a119499
dc.identifier.citedreferenceKosoy, M. Y., Regnery, R. L., Kosaya, O. I., & Childs, J. E. ( 1999 ). Experimental infection of cotton rats with three naturally occurring Bartonella species. Journal of Wildlife Diseases, 35 ( 2 ), 275 – 284. https://doi.org/10.7589/0090-3558-35.2.275
dc.identifier.citedreferenceKubinak, J. L., Cornwall, D. H., Hasenkrug, K. J., Adler, F. R., & Potts, W. K. ( 2015 ). Serial infection of diverse host ( Mus ) genotypes rapidly impedes pathogen fitness and virulence. Proceedings of the Royal Society B, 282 ( 1798 ), 20141568. https://doi.org/10.1098/rspb.2014.1568
dc.identifier.citedreferenceLauring, A. S. ( 2020 ). Within-host viral diversity: A window into viral evolution. Annual Review of Virology, 7 ( 1 ), 63 – 81. https://doi.org/10.1146/annurev-virology-010320-061642
dc.identifier.citedreferenceLenski, R. E. ( 2017a ). Convergence and divergence in a long-term experiment with bacteria. The American Naturalist, 190, S57 – S68. https://doi.org/10.1086/691209
dc.identifier.citedreferenceLenski, R. E. ( 2017b ). Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. The ISME Journal, 11 ( 10 ), 2181 – 2194. https://doi.org/10.1038/ismej.2017.69
dc.identifier.citedreferenceLenski, R. E., & Travisano, M. ( 1994 ). Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 91 ( 15 ), 6808 – 6814. https://doi.org/10.1073/pnas.91.15.6808
dc.identifier.citedreferenceLoh, E., Salk, J. J., & Loeb, L. A. ( 2010 ). Optimization of DNA polymerase mutation rates during bacterial evolution. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 3 ), 1154 – 1159. https://doi.org/10.1073/pnas.0912451107
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.