A road map for in vivo evolution experiments with blood-borne parasitic microbes
dc.contributor.author | Rodríguez-Pastor, Ruth | |
dc.contributor.author | Shafran, Yarden | |
dc.contributor.author | Knossow, Nadav | |
dc.contributor.author | Gutiérrez, Ricardo | |
dc.contributor.author | Harrus, Shimon | |
dc.contributor.author | Zaman, Luis | |
dc.contributor.author | Lenski, Richard E. | |
dc.contributor.author | Barrick, Jeffrey E. | |
dc.contributor.author | Hawlena, Hadas | |
dc.date.accessioned | 2022-10-05T15:52:30Z | |
dc.date.available | 2023-12-05 11:52:28 | en |
dc.date.available | 2022-10-05T15:52:30Z | |
dc.date.issued | 2022-11 | |
dc.identifier.citation | Rodríguez-Pastor, Ruth ; Shafran, Yarden; Knossow, Nadav; Gutiérrez, Ricardo ; Harrus, Shimon; Zaman, Luis; Lenski, Richard E.; Barrick, Jeffrey E.; Hawlena, Hadas (2022). "A road map for in vivo evolution experiments with blood- borne parasitic microbes." Molecular Ecology Resources (8): 2843-2859. | |
dc.identifier.issn | 1755-098X | |
dc.identifier.issn | 1755-0998 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/174942 | |
dc.description.abstract | Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Bartonella spp. | |
dc.subject.other | experimental evolution | |
dc.subject.other | host–parasite adaptation | |
dc.subject.other | in vivo experiments | |
dc.subject.other | microbial pathogens | |
dc.subject.other | population bottlenecks | |
dc.subject.other | sequential passages | |
dc.title | A road map for in vivo evolution experiments with blood-borne parasitic microbes | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/174942/1/men13649.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/174942/2/men13649_am.pdf | |
dc.identifier.doi | 10.1111/1755-0998.13649 | |
dc.identifier.source | Molecular Ecology Resources | |
dc.identifier.citedreference | Mehta, H., Prater, A., & Shamoo, Y. ( 2018 ). Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance. The Journal of Antibiotics, 71, 279 – 286. https://doi.org/10.1038/ja.2017.108 | |
dc.identifier.citedreference | Mackinnon, M. J., Bell, A., & Read, A. F. ( 2005 ). The effects of mosquito transmission and population bottlenecking on virulence, multiplication rate and rosetting in rodent malaria. International Journal for Parasitology, 35 ( 2 ), 145 – 153. https://doi.org/10.1016/j.ijpara.2004.11.011 | |
dc.identifier.citedreference | Mackinnon, M. J., & Read, A. F. ( 1999 ). Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution, 53 ( 3 ), 689 – 703. https://doi.org/10.1111/j.1558-5646.1999.tb05364.x | |
dc.identifier.citedreference | Marignac, G., Barrat, F., Chomel, B., Vayssier-Taussat, M., Gandoin, C., Bouillin, C., & Boulouis, H. J. ( 2010 ). Murine model for Bartonella birtlesii infection: New aspects. Comparative Immunology, Microbiology and Infectious Diseases, 33 ( 2 ), 95 – 107. https://doi.org/10.1016/j.cimid.2008.07.011 | |
dc.identifier.citedreference | Marvig, R. L., Damkiær, S., Khademi, S. M., Markussen, T. M., Molin, S., & Jelsbak, L. ( 2014 ). Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio, 5 ( 3 ), e00966 – e00914. https://doi.org/10.1128/mBio.00966-14 | |
dc.identifier.citedreference | Meghari, S., Rolain, J. M., Grau, G. E., Platt, E., Barrassi, L., Mège, J. L., & Raoult, D. ( 2006 ). Antiangiogenic effect of erythromycin: An in vitro model of Bartonella quintana infection. The Journal of Infectious Diseases, 193 ( 3 ), 380 – 386. https://doi.org/10.1086/499276 | |
dc.identifier.citedreference | Michelitsch, A., Fast, C., Sick, F., Tews, B. A., Stiasny, K., Bestehorn-Willmann, M., Dobler, G., Beer, M., & Wernike, K. ( 2021 ). Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles ( Myodes glareolus ). Ticks and Tick-borne Diseases, 12 ( 4 ), 101693. https://doi.org/10.1016/j.ttbdis.2021.101693 | |
dc.identifier.citedreference | Moncla, L. H., Bedford, T., Dussart, P., Horm, S. V., Rith, S., Buchy, P., Karlsson, E. A., Li, L., Liu, Y., Zhu, H., Guan, Y., Friedrich, T. C., & Horwood, P. F. ( 2020 ). Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. PLoS Pathogens, 16 ( 1 ), e1008191. https://doi.org/10.1371/journal.ppat.1008191 | |
dc.identifier.citedreference | Mook-Kanamori, B., Geldhoff, M., Troost, D., van der Poll, T., & van de Beek, D. ( 2012 ). Characterization of a pneumococcal meningitis mouse model. BMC Infectious Diseases, 12, 71. https://doi.org/10.1186/1471-2334-12-71 | |
dc.identifier.citedreference | Morick, D., Krasnov, B. R., Khokhlova, I. S., Gottlieb, Y., & Harrus, S. ( 2011 ). Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae). Molecular Ecology, 20 ( 13 ), 2864 – 2870. https://doi.org/10.1111/j.1365-294X.2011.05033.x | |
dc.identifier.citedreference | Morton, D. B., Jennings, M., Buckwell, A., Ewbank, R., Godfrey, C., Holgate, B., Inglis, I., James, R., Page, C., Sharman, I., Verschoyle, R., Westall, L., Wilson, A. B., & Refinement, J. W. G. O. ( 2001 ). Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on Refinement. British veterinary association animal welfare foundation/Fund for the Replacement of animals in medical experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Laboratory Animals, 35 ( 1 ), 1 – 14. https://doi.org/10.1258/0023677011911345 | |
dc.identifier.citedreference | Nilsson, A. I., Koskiniemi, S., Eriksson, S., Kugelberg, E., Hinton, J. C., & Andersson, D. I. ( 2005 ). Bacterial genome size reduction by experimental evolution. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 34 ), 12112 – 12116. https://doi.org/10.1073/pnas.0503654102 | |
dc.identifier.citedreference | Ou, F., McGoverin, C., Swift, S., & Vanholsbeeck, F. ( 2017 ). Absolute bacterial cell enumeration using flow cytometry. Journal of Applied Microbiology, 123 ( 2 ), 464 – 477. https://doi.org/10.1111/jam.13508 | |
dc.identifier.citedreference | Palinauskas, V., Valkiūnas, G., Bolshakov, C. V., & Bensch, S. ( 2008 ). Plasmodium relictum (lineage P-SGS1): Effects on experimentally infected passerine birds. Experimental Parasitology, 120 ( 4 ), 372 – 380. https://doi.org/10.1016/j.exppara.2008.09.001 | |
dc.identifier.citedreference | Patil, D. R., Hundekar, S. L., & Arankalle, V. A. ( 2012 ). Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Microbes and Infection, 14 ( 5 ), 457 – 469. https://doi.org/10.1016/j.micinf.2011.12.008 | |
dc.identifier.citedreference | Poon, A. F., Swenson, L. C., Dong, W. W., Deng, W., Kosakovsky Pond, S. L., Brumme, Z. L., Mullins, J. I., Richman, D. D., Harrigan, P. R., & Frost, S. D. ( 2010 ). Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Molecular Biology and Evolution, 27 ( 4 ), 819 – 832. https://doi.org/10.1093/molbev/msp289 | |
dc.identifier.citedreference | Regnath, T., Mielke, M. E. A., Arvand, M., & Hahn, H. ( 1998 ). Murine model of Bartonella henselae infection in the immunocompetent host. Infection and Immunity, 66 ( 11 ), 5534 – 5536. https://doi.org/10.1128/IAI.66.11.5534-5536.1998 | |
dc.identifier.citedreference | Rejmanek, D., Foley, P., Barbet, A., & Foley, J. ( 2012 ). Evolution of antigen variation in the tick-borne pathogen Anaplasma phagocytophilum. Molecular Biology and Evolution, 29 ( 1 ), 391 – 400. https://doi.org/10.1093/molbev/msr229 | |
dc.identifier.citedreference | Riemersma, K. K., Jaeger, A. S., Crooks, C. M., Braun, K. M., Weger-Lucarelli, J., Ebel, G. D., Friedrich, T. C., & Aliota, M. T. ( 2021 ). Rapid evolution of enhanced Zika virus virulence during direct vertebrate transmission chains. Journal of Virology, 95 ( 8 ), e02218 – e02220. https://doi.org/10.1128/JVI.02218-20 | |
dc.identifier.citedreference | Riess, T., Raddatz, G., Linke, D., Schäfer, A., & Kempf, V. A. ( 2007 ). Analysis of Bartonella adhesin a expression reveals differences between various B. henselae strains. Infection and Immunity, 75 ( 1 ), 35 – 43. https://doi.org/10.1128/IAI.00963-06 | |
dc.identifier.citedreference | Robinson, C. D., Klein, H. S., Murphy, K. D., Parthasarathy, R., Guillemin, K., & Bohannan, B. J. M. ( 2018 ). Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biology, 16 ( 12 ), e2006893. https://doi.org/10.1371/journal.pbio.2006893 | |
dc.identifier.citedreference | Schmitt, K., Curlin, J., Remling-Mulder, L., Moriarty, R., Goff, K., O’Connor, S., Stenglein, M., Marx, P., & Akkina, R. ( 2020 ). Cross-species transmission and evolution of SIV chimpanzee progenitor viruses toward HIV-1 in humanized mice. Frontiers in Microbiology, 11, 1889. https://doi.org/10.3389/fmicb.2020.01889 | |
dc.identifier.citedreference | Sinha, R., Malar, M., Raghwan, Das, S., Das, S., Shadab, M., Chowdhury, R., Tripathy, S., & Ali, N. ( 2018 ). Genome plasticity in cultured Leishmania donovani: Comparison of early and late passages. Frontiers in Microbiology, 9, 1279. https://doi.org/10.3389/fmicb.2018.01279 | |
dc.identifier.citedreference | Sprouffske, K., Aguilar-Rodríguez, J., Sniegowski, P., & Wagner, A. ( 2018 ). High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genetics, 14 ( 4 ), e1007324. https://doi.org/10.1371/journal.pgen.1007324 | |
dc.identifier.citedreference | Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M. R., Appelbaum, P. C., & Sutcliffe, J. ( 2000 ). Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrobial Agents and Chemotherapy, 44 ( 8 ), 2118 – 2125. https://doi.org/10.1128/AAC.44.8.2118-2125.2000 | |
dc.identifier.citedreference | Tian, D., Uda, A., Park, E. S., Hotta, A., Fujita, O., Yamada, A., Hirayama, K., Hotta, K., Koyama, Y., Azaki, M., & Morikawa, S. ( 2018 ). Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiology and Immunology, 62 ( 1 ), 24 – 33. https://doi.org/10.1111/1348-0421.12555 | |
dc.identifier.citedreference | Trunk, T., Khalil, H. S., & Leo, J. C. ( 2018 ). Bacterial autoaggregation. AIMS Microbiology, 41 ( 1 ), 140 – 164. https://doi.org/10.3934/microbiol.2018.1.140 | |
dc.identifier.citedreference | Van den Bergh, B., Swings, T., Fauvart, M., & Michiels, J. ( 2018 ). Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiology and Molecular Biology Reviews, 82 ( 3 ), e00008 – e00018. https://doi.org/10.1128/MMBR.00008-18 | |
dc.identifier.citedreference | Wahl, L. M., Gerrish, P. J., & Saika-Voivod, I. ( 2002 ). Evaluating the impact of population bottlenecks in experimental evolution. Genetics, 162 ( 2 ), 961 – 971. https://doi.org/10.1093/genetics/162.2.961 | |
dc.identifier.citedreference | Werner, J. A., Kasten, R. W., Feng, S., Sykes, J. E., Hodzic, E., Salemi, M. R., Barthold, S. W., & Chomel, B. ( 2007 ). Experimental infection of domestic cats with passaged genotype I Bartonella henselae. Veterinary Microbiology, 122 ( 3–4 ), 290 – 297. https://doi.org/10.1016/j.vetmic.2007.01.018 | |
dc.identifier.citedreference | Zhou, W., Spoto, M., Hardy, R., Guan, C., Fleming, E., Larson, P. J., Brown, J. S., & Oh, J. ( 2020 ). Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell, 180 ( 3 ), 454 – 470.e418. https://doi.org/10.1016/j.cell.2020.01.006 | |
dc.identifier.citedreference | Coffey, L. L., Vasilakis, N., Brault, A. C., Powers, A. M., Tripet, F., & Weaver, S. C. ( 2008 ). Arbovirus evolution in vivo is constrained by host alternation. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 19 ), 6970 – 6975. https://doi.org/10.1073/pnas.0712130105 | |
dc.identifier.citedreference | Agha, R., Gross, A., Rohrlack, T., & Wolinska, J. ( 2018 ). Adaptation of a chytrid parasite to its cyanobacterial host is hampered by host intraespecific diverdity. Frontiers in Microbiology, 9, 921. https://doi.org/10.3389/fmicb.2018.00921 | |
dc.identifier.citedreference | Ahmed, N. H. ( 2014 ). Cultivation of parasites. Tropical Parasitology, 4 ( 2 ), 80 – 89. https://doi.org/10.4103/2229-5070.138534 | |
dc.identifier.citedreference | Alizon, S., de Roode, J. C., & Michalakis, Y. ( 2013 ). Multiple infections and the evolution of virulence. Ecology Letters, 16 ( 4 ), 556 – 567. https://doi.org/10.1111/ele.12076 | |
dc.identifier.citedreference | Barrick, J. E., & Lenski, R. E. ( 2013 ). Genome dynamics during experimental evolution. Nature Reviews. Genetics, 14 ( 12 ), 827 – 839. https://doi.org/10.1038/nrg3564 | |
dc.identifier.citedreference | Bashey, F., Morran, L. T., & Lively, C. M. ( 2007 ). Co-infection, kin selection, and the rate of host exploitation by a parasitic nematode. Evolutionary Ecology Research, 9 ( 6 ), 947 – 958. | |
dc.identifier.citedreference | Bastos, T., Faria, A. M., Cavalcante, A., Madrid, D., Zapa, D., Nicaretta, J. E., Cruvinel, L. B., Heller, L. M., Couto, L., Rodrigues, D. C., Ferreira, L. L., Soares, V. E., Cadioli, F. A., & Lopes, W. ( 2020 ). Infection capacity of Trypanosoma vivax experimentally inoculated through different routes in bovines with latent Anaplasma marginale. Experimental Parasitology, 211, 107861. https://doi.org/10.1016/j.exppara.2020.107861 | |
dc.identifier.citedreference | Batstone, R. T., O’Brien, A. M., Harrison, T. L., & Frederickson, M. E. ( 2020 ). Experimental evolution makes microbes more cooperative with their local host genotype. Science, 370 ( 6515 ), 476 – 478. https://doi.org/10.1126/science.abb7222 | |
dc.identifier.citedreference | Bellone, R., Lequime, S., Jupille, H., Göertz, G. P., Aubry, F., Mousson, L., Piorkowski, G., Yen, P. S., Gabiane, G., Vazeille, M., Sakuntabhai, A., Pijlman, G. P., de Lamballerie, X., Lambrechts, L., & Failloux, A. B. ( 2020 ). Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection. Scientific Reports, 10 ( 1 ), 18404. https://doi.org/10.1038/s41598-020-75042-4 | |
dc.identifier.citedreference | Ben-Ami, F., Rigaud, T., & Ebert, D. ( 2011 ). The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Journal of Evolutionary Biology, 24 ( 6 ), 1307 – 1316. https://doi.org/10.1111/j.1420-9101.2011.02264.x | |
dc.identifier.citedreference | Blount, Z. D., Borland, C. Z., & Lenski, R. E. ( 2008 ). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, 105 ( 23 ), 7899 – 7906. https://doi.org/10.1073/pnas.0803151105 | |
dc.identifier.citedreference | Blount, Z. D., Lenski, R. E., & Losos, J. B. ( 2018 ). Contingency and determinism in evolution: Replaying life’s tape. Science (New York, N.Y.), 362 ( 6415 ), eaam5979. https://doi.org/10.1126/science.aam5979 | |
dc.identifier.citedreference | Brockhurst, M. A., Colegrave, N., & Rozen, D. E. ( 2011 ). Next-generation sequencing as a tool to study microbial evolution. Molecular Ecology, 25 ( 5 ), 972 – 980. https://doi.org/10.1111/j.1365-294X.2010.04835.x | |
dc.identifier.citedreference | Brockhurst, M. A., & Koskella, B. ( 2013 ). Experimental coevolution of species interactions. Trends in Ecology & Evolution, 28 ( 6 ), 367 – 375. https://doi.org/10.1016/j.tree.2013.02.009 | |
dc.identifier.citedreference | Ciota, A. T., Jia, Y., Payne, A. F., Jerzak, G., Davis, L. J., Young, D. S., Ehrbar, D., & Kramer, L. D. ( 2009 ). Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and chickens reveals evolutionarily significant virus characteristics. PLoS One, 4, e7876. https://doi.org/10.1371/journal.pone.0007876 | |
dc.identifier.citedreference | Conlan, J. W., Chen, W., Shen, H., Webb, A., & KuoLee, R. ( 2003 ). Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: Bacteriologic and histopathologic studies. Microbial Pathogenesis, 34 ( 5 ), 239 – 248. https://doi.org/10.1016/s0882-4010(03)00046-9 | |
dc.identifier.citedreference | Cooper, T. F. ( 2007 ). Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biology, 5 ( 9 ), e225. https://doi.org/10.1371/journal.pbio.0050225 | |
dc.identifier.citedreference | Cornwall, D. H., Kubinak, J. L., Zachary, E., Stark, D. L., Seipel, D., & Potts, W. K. ( 2018 ). Experimental manipulation of population-level MHC diversity controls pathogen virulence evolution in Mus musculus. Journal of Evolutionary Biology, 31, 314 – 322. https://doi.org/10.1111/jeb.13225 | |
dc.identifier.citedreference | Cuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P., & Elena, S. F. ( 2015 ). Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Molecular Biology and Evolution, 32 ( 5 ), 1132 – 1147. https://doi.org/10.1093/molbev/msv028 | |
dc.identifier.citedreference | Culyba, M. J., & Van Tyne, D. ( 2021 ). Bacterial evolution during human infection: Adapt and live or adapt and die. PLoS Pathogens, 17 ( 9 ), e1009872. https://doi.org/10.1371/journal.ppat.1009872 | |
dc.identifier.citedreference | Davies, R. S., Madigan, J. E., Hodzic, E., Borjesson, D. L., & Dumler, J. S. ( 2011 ). Dexamethasone-induced cytokine changes associated with diminished disease severity in horses infected with Anaplasma phagocytophilum. Clinical and Vaccine Immunology: CVI, 18 ( 11 ), 1962 – 1968. https://doi.org/10.1128/CVI.05034-11 | |
dc.identifier.citedreference | de Roode, J. C., Pansini, R., Cheesman, S. J., Helinski, M. E., Huijben, S., Wargo, A. R., Bell, A. S., Chan, B. H., Walliker, D., & Read, A. F. ( 2005 ). Virulence and competitive ability in genetically diverse malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 21 ), 7624 – 7628. https://doi.org/10.1073/pnas.0500078102 | |
dc.identifier.citedreference | Deardorff, E. R., Fitzpatrick, K. A., Jerzak, G. V., Shi, P. Y., Kramer, L. D., & Ebel, G. D. ( 2011 ). West Nile virus experimental evolution in vivo and the trade-off hypothesis. PLoS Pathogens, 7 ( 11 ), e1002335. https://doi.org/10.1371/journal.ppat.1002335 | |
dc.identifier.citedreference | Dettman, J. R., Rodrigue, N., Melnyk, A. H., Wong, A., Bailey, S. F., & Kassen, R. ( 2012 ). Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Molecular Ecology, 21 ( 9 ), 2058 – 2077. https://doi.org/10.1111/j.1365-294X.2012.05484.x | |
dc.identifier.citedreference | Diard, M., & Hardt, W. D. ( 2017 ). Basic processes in salmonella -host interactions: Within-host evolution and the transmission of the virulent genotype. Microbiology spectrum, 5 ( 5 ). https://doi.org/10.1128/microbiolspec.MTBP-0012-2016 | |
dc.identifier.citedreference | Duneau, D., Luijckx, P., Ruder, L. F., & Ebert, D. ( 2012 ). Sex-specific effects of a parasite evolving in a female-biased host population. BMC Biololgy, 10, 104. https://doi.org/10.1186/1741-7007-10-104 | |
dc.identifier.citedreference | Ebert, D. ( 1998 ). Experimental evolution of parasites. Science, 282 ( 5393 ), 1432 – 1435. https://doi.org/10.1126/science.282.5393.1432 | |
dc.identifier.citedreference | Eidelman, A., Cohen, C., Navarro-Castilla, Á., Filler, S., Gutiérrez, R., Bar-Shira, E., Shahar, N., Garrido, M., Halle, S., Romach, Y., Barja, I., Tasker, S., Harrus, S., Friedman, A., & Hawlena, H. ( 2019 ). The dynamics between limited-term and lifelong coinfecting bacterial parasites in wild rodent hosts. Journal of Experimental Biology, 222, jeb203562. https://doi.org/10.1242/jeb.203562 | |
dc.identifier.citedreference | Fish, I., Stenfeldt, C., Palinski, R. M., Pauszek, S. J., & Arzt, J. ( 2020 ). Into the deep (sequence) of the foot-and-mouth disease virus gene pool: Bottlenecks and adaptation during infection in naïve and vaccinated cattle. Pathogens, 9 ( 3 ), 208. https://doi.org/10.3390/pathogens9030208 | |
dc.identifier.citedreference | Gaunt, S. D., Corstvet, R. E., Berry, C. M., & Brennan, B. ( 1996 ). Isolation of Ehrlichia canis from dogs following subcutaneous inoculation. Journal of Clinical Microbiology, 34 ( 6 ), 1429 – 1432. https://doi.org/10.1128/jcm.34.6.1429-1432.1996 | |
dc.identifier.citedreference | Genestet, C., Hodille, E., Barbry, A., Berland, J. L., Hoffmann, J., Westeel, E., Bastian, F., Guichardant, M., Venner, S., Lina, G., Ginevra, C., Ader, F., Goutelle, S., & Dumitrescu, O. ( 2021 ). Rifampicin exposure reveals within-host Mycobacterium tuberculosis diversity in patients with delayed culture conversion. PLoS Pathogens, 17 ( 6 ), e1009643. https://doi.org/10.1371/journal.ppat.1009643 | |
dc.identifier.citedreference | Giraud, T., Koskella, B., & Laine, A. L. ( 2017 ). Introduction: Microbial local adaptation: Insights from natural populations, genomics and experimental evolution. Molecular Ecology, 26 ( 7 ), 1703 – 1710. https://doi.org/10.1111/mec.14091 | |
dc.identifier.citedreference | González, R., Butkovic, A., & Elena, S. F. ( 2019 ). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus evolution, 5 ( 2 ), vez024. https://doi.org/10.1093/ve/vez024 | |
dc.identifier.citedreference | Gutiérrez, R., Cohen, C., Flatau, R., Marcos-Hadad, E., Garrido, M., Halle, S., Nachum-Biala, Y., Covo, S., Hawlena, H., & Harrus, S. ( 2018 ). Untangling the knots: Co-infection and diversity of Bartonella from wild gerbils and their associated fleas. Molecular Ecology, 27 ( 23 ), 4787 – 4807. https://doi.org/10.1111/mec.14906 | |
dc.identifier.citedreference | Gutiérrez, R., Markus, B., Marques, C., de Sousa, K., Marcos-Hadad, E., Mugasimangalam, R. C., Nachum-Biala, Y., Hawlena, H., Covo, S., & Harrus, S. ( 2018 ). Prophage-driven genomic structural changes promote Bartonella vertical evolution. Genome Biology and Evolution, 10 ( 11 ), 3089 – 3103. https://doi.org/10.1093/gbe/evy236 | |
dc.identifier.citedreference | Hall, A. R., De Vos, D., Friman, V. P., Pirnay, J. P., & Buckling, A. ( 2012 ). Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Applied and Environmental Microbiology, 78 ( 16 ), 5646 – 5652. https://doi.org/10.1128/AEM.00757-12 | |
dc.identifier.citedreference | Hart, S. P., Turcotte, M. M., & Levine, J. M. ( 2019 ). Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 116, 2112 – 2117. https://doi.org/10.1073/pnas.1816298116 | |
dc.identifier.citedreference | Hernandez, C. A., & Koskella, B. ( 2019 ). Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system*. Evolution, 73 ( 12 ), 2461 – 2475. https://doi.org/10.1111/evo.13833 | |
dc.identifier.citedreference | Hindré, T., Knibbe, C., Beslon, G., & Schneider, D. ( 2012 ). New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nature Reviews. Microbiology, 10 ( 5 ), 352 – 365. https://doi.org/10.1038/nrmicro2750 | |
dc.identifier.citedreference | Hoang, K. L., Morran, L. T., & Gerardo, N. M. ( 2016 ). Experimental evolution as an underutilized tool for studying beneficial animal-microbe interactions. Frontiers in Microbiology, 7, 1444. https://doi.org/10.3389/fmicb.2016.01444 | |
dc.identifier.citedreference | Hong, J., Li, Y., Hua, X., Bai, Y., Wang, C., Zhu, C., Du, Y., Yang, Z., & Yuan, C. ( 2017 ). Lymphatic circulation disseminates Bartonella infection into bloodstream. The Journal of Infectious Diseases, 215 ( 2 ), 303 – 311. https://doi.org/10.1093/infdis/jiw526 | |
dc.identifier.citedreference | Izutsu, M., Lake, D. M., Matson, Z. W. D., Dodson, J. P., & Lenski, R. E. ( 2021 ). Effects of periodic bottlenecks on the dynamics of adaptive evolution in microbial populations., bioRxiv, 12.29.474457. https://doi.org/10.1101/2021.12.29.474457 | |
dc.identifier.citedreference | Jerzak, G. V., Bernard, K., Kramer, L. D., Shi, P. Y., & Ebel, G. D. ( 2007 ). The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology, 360 ( 2 ), 469 – 476. https://doi.org/10.1016/j.virol.2006.10.029 | |
dc.identifier.citedreference | Jerzak, G. V., Brown, I., Shi, P. Y., Kramer, L. D., & Ebel, G. D. ( 2008 ). Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology, 374 ( 2 ), 256 – 260. https://doi.org/10.1016/j.virol.2008.02.032 | |
dc.identifier.citedreference | Jones, S. R., Palmen, M., & van Muiswinkel, W. B. ( 1993 ). Effects of inoculum route and dose on the immune response of common carp, Cyprinus carpio to the blood parasite. Trypanoplasma borreli. Veterinary Immunology and Immunopathology, 36 ( 4 ), 369 – 378. https://doi.org/10.1016/0165-2427(93)90032-y | |
dc.identifier.citedreference | Karve, S. M., Bhave, D., Nevgi, D., & Dey, S. ( 2016 ). Escherichia coli populations adapt to complex, unpredictable fluctuations by minimizing trade-offs across environments. Journal of Evolutionary Biology, 29 ( 12 ), 2545 – 2555. https://doi.org/10.1111/jeb.12972 | |
dc.identifier.citedreference | Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. ( 2012 ). Experimental evolution. Trends in Ecology & Evolution, 27 ( 10 ), 547 – 560. https://doi.org/10.1016/j.tree.2012.06.001 | |
dc.identifier.citedreference | Koprowski, H., Jervis, G. A., & Norton, T. W. ( 1952 ). Immune responses in human volunteers upon oral administration of a rodent-adapted strain of poliomyelitis virus. American Journal of Hygiene, 55 ( 1 ), 108 – 124. https://doi.org/10.1093/oxfordjournals.aje.a119499 | |
dc.identifier.citedreference | Kosoy, M. Y., Regnery, R. L., Kosaya, O. I., & Childs, J. E. ( 1999 ). Experimental infection of cotton rats with three naturally occurring Bartonella species. Journal of Wildlife Diseases, 35 ( 2 ), 275 – 284. https://doi.org/10.7589/0090-3558-35.2.275 | |
dc.identifier.citedreference | Kubinak, J. L., Cornwall, D. H., Hasenkrug, K. J., Adler, F. R., & Potts, W. K. ( 2015 ). Serial infection of diverse host ( Mus ) genotypes rapidly impedes pathogen fitness and virulence. Proceedings of the Royal Society B, 282 ( 1798 ), 20141568. https://doi.org/10.1098/rspb.2014.1568 | |
dc.identifier.citedreference | Lauring, A. S. ( 2020 ). Within-host viral diversity: A window into viral evolution. Annual Review of Virology, 7 ( 1 ), 63 – 81. https://doi.org/10.1146/annurev-virology-010320-061642 | |
dc.identifier.citedreference | Lenski, R. E. ( 2017a ). Convergence and divergence in a long-term experiment with bacteria. The American Naturalist, 190, S57 – S68. https://doi.org/10.1086/691209 | |
dc.identifier.citedreference | Lenski, R. E. ( 2017b ). Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. The ISME Journal, 11 ( 10 ), 2181 – 2194. https://doi.org/10.1038/ismej.2017.69 | |
dc.identifier.citedreference | Lenski, R. E., & Travisano, M. ( 1994 ). Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 91 ( 15 ), 6808 – 6814. https://doi.org/10.1073/pnas.91.15.6808 | |
dc.identifier.citedreference | Loh, E., Salk, J. J., & Loeb, L. A. ( 2010 ). Optimization of DNA polymerase mutation rates during bacterial evolution. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 3 ), 1154 – 1159. https://doi.org/10.1073/pnas.0912451107 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.