Show simple item record

Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning

dc.contributor.authorLiu, Lianli
dc.contributor.authorShen, Liyue
dc.contributor.authorJohansson, Adam
dc.contributor.authorBalter, James M.
dc.contributor.authorCao, Yue
dc.contributor.authorChang, Daniel
dc.contributor.authorXing, Lei
dc.date.accessioned2022-10-05T15:52:46Z
dc.date.available2023-10-05 11:52:45en
dc.date.available2022-10-05T15:52:46Z
dc.date.issued2022-09
dc.identifier.citationLiu, Lianli; Shen, Liyue; Johansson, Adam; Balter, James M.; Cao, Yue; Chang, Daniel; Xing, Lei (2022). "Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning." Medical Physics 49(9): 6110-6119.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/174947
dc.description.abstractPurposeTo develop a geometry-informed deep learning framework for volumetric MRI with sub-second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time.MethodsA 2D–3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k-space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high-resolution volumetric images. Patient-specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model-reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5-min time series of both ground truth and model-reconstructed volumetric images with a temporal resolution of 340 ms.ResultsAcross the seven patients evaluated, the median distances between model-predicted and ground truth GTV centroids in the superior-inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95-percentile Hausdorff distances between model-predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross-plane image resolution.ConclusionIncorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI-guided radiotherapy precision.
dc.publisherIEEE
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdeep learning
dc.subject.otherimage reconstruction
dc.subject.othermotion tracking
dc.subject.otherMRI-guided radiotherapy
dc.titleReal time volumetric MRI for 3D motion tracking via geometry-informed deep learning
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174947/1/mp15822.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174947/2/mp15822_am.pdf
dc.identifier.doi10.1002/mp.15822
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceChandarana H, Block KT, Winfeld MJ, et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol. 2014; 24 ( 2 ): 320 - 326.
dc.identifier.citedreferenceGinn JS, Ruan D, Low DA, Lamb JM. An image regression motion prediction technique for MRI-guided radiotherapy evaluated in single-plane cine imaging. Med Phys. 2020; 47 ( 2 ): 404 - 413.
dc.identifier.citedreferenceMickevicius NJ, Paulson ES. Simultaneous acquisition of orthogonal plane cine imaging and isotropic 4D-MRI using super-resolution. Radiother Oncol. 2019; 136: 121 - 129.
dc.identifier.citedreferenceFeng L, Tyagi N, Otazo R. MRSIGMA: magnetic resonance SIGnature MAtching for real-time volumetric imaging. Magn Reson Med. 2020; 84: 1280 - 1292.
dc.identifier.citedreferenceBjerre T, Crijns S, af Rosenschöld PM, et al. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes. Physics in Medicine & Biology. 2013; 58 ( 14 ): 4943.
dc.identifier.citedreferenceStemkens B, Tijssen RH, De Senneville BD, Lagendijk JJ, Van Den Berg CA. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Physics in Medicine & Biology. 2016; 61 ( 14 ): 5335.
dc.identifier.citedreferenceLustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008; 25 ( 2 ): 72 - 82.
dc.identifier.citedreferenceZhao B, Haldar JP, Brinegar C, Liang ZP. Low rank matrix recovery for real-time cardiac MRI. IEEE; 2010.
dc.identifier.citedreferenceOtazo R, Candes E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med. 2015; 73 ( 3 ): 1125 - 1136.
dc.identifier.citedreferenceZhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018; 555 ( 7697 ): 487 - 492.
dc.identifier.citedreferenceMardani M, Gong E, Cheng JY, et al. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging. 2018; 38 ( 1 ): 167 - 179.
dc.identifier.citedreferenceWu Y, Ma Y, Capaldi DP, et al. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magn Reson Imaging. 2020; 66: 93 - 103.
dc.identifier.citedreferenceHyun CM, Kim HP, Lee SM, Lee S, Seo JK. Deep learning for undersampled MRI reconstruction. Physics in Medicine & Biology. 2018; 63 ( 13 ): 135007.
dc.identifier.citedreferenceAggarwal HK, Mani MP, Jacob M. Model based image reconstruction using deep learned priors (MODL). IEEE; 2018.
dc.identifier.citedreferenceShen L, Zhao W, Capaldi D, Pauly J, Xing L. A Geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. Accessed May 25, 2021. arXiv:2105.11692
dc.identifier.citedreferenceFeng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2016; 75 ( 2 ): 775 - 788.
dc.identifier.citedreferenceSeregni M, Paganelli C, Lee D, et al. Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI. Physics in Medicine & Biology. 2016; 61 ( 2 ): 872.
dc.identifier.citedreferenceJohansson A, Balter J, Cao Y. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI. Magn Reson Med. 2018; 79 ( 3 ): 1345 - 1353.
dc.identifier.citedreferenceShen L, Zhu W, Wang X, et al. Multi-domain image completion for random missing input data. IEEE Trans Med Imaging. 2020; 40 ( 4 ): 1113 - 1122.
dc.identifier.citedreferenceRonneberger O, Fischer P, Brox T, U-net: convolutional networks for biomedical image segmentation. Springer; 2015.
dc.identifier.citedreferenceJohansson A, Balter JM, Cao Y. Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys. 2018; 45: 4529 - 4540.
dc.identifier.citedreferenceLiu L, Johansson A, Cao Y, Lawrence TS, Balter JM. Volumetric prediction of breathing and slow drifting motion in the abdomen using radial MRI and multi-temporal resolution modeling. Physics in Medicine & Biology. 2021; 66: 175028.
dc.identifier.citedreferenceModat M, Ridgway GR, Taylor ZA, et al. Fast free-form deformation using graphics processing units. Comput Meth Prog Bio. 2010; 98 ( 3 ): 278 - 284.
dc.identifier.citedreferenceShen L, Zhao Wei, Xing Lei. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature Biomedical Engineering. 2019; 3: 880 - 888.
dc.identifier.citedreferenceMostafaei F, Tai AN, Omari E, et al. Variations of MRI-assessed peristaltic motions during radiation therapy. PLoS One. 2018; 13 ( 10 ): e0205917.
dc.identifier.citedreferenceLiu L, Johansson A, Cao Y, Kashani R, Lawrence TS, Balter JM. Modeling intra-fractional abdominal configuration changes using breathing motion-corrected radial MRI. Physics in Medicine & Biology. 2021; 66 ( 8 ): 085002.
dc.identifier.citedreferenceJohansson A, Balter JM, Cao Y. Gastrointestinal 4D MRI with respiratory motion correction. Med Phys. 2021; 48 ( 5 ): 2521 - 2527.
dc.identifier.citedreferenceLi W, Purdie TG, Taremi M, et al. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. International Journal of Radiation Oncology* Biology* Physics. 2011; 81 ( 5 ): 1568 - 1575.
dc.identifier.citedreferenceWysocka B, Kassam Z, Lockwood G, et al. Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. International Journal of Radiation Oncology* Biology* Physics. 2010; 77 ( 1 ): 53 - 59.
dc.identifier.citedreferenceWojcieszynski AP, Rosenberg SA, Brower JV, et al. Gadoxetate for direct tumor therapy and tracking with real-time MRI-guided stereotactic body radiation therapy of the liver. Radiother Oncol. 2016; 118 ( 2 ): 416 - 418.
dc.identifier.citedreferenceKeiper TD, Tai A, Chen X, et al. Feasibility of real-time motion tracking using cine MRI during MR-guided radiation therapy for abdominal targets. Med Phys. 2020; 47 ( 8 ): 3554 - 3566.
dc.identifier.citedreferencede Muinck Keizer DM, Pathmanathan AU, Andreychenko A, et al. Fiducial marker based intra-fraction motion assessment on cine-MR for MR-linac treatment of prostate cancer. Physics in Medicine & Biology. 2019; 64 ( 7 ): 07NT02.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.