Show simple item record

Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region

dc.contributor.authorKong, Weibo
dc.contributor.authorWei, Xiaorong
dc.contributor.authorWu, Yonghong
dc.contributor.authorShao, Mingan
dc.contributor.authorZhang, Qian
dc.contributor.authorSadowsky, Michael J.
dc.contributor.authorIshii, Satoshi
dc.contributor.authorReich, Peter B.
dc.contributor.authorWei, Gehong
dc.contributor.authorJiao, Shuo
dc.contributor.authorQiu, Liping
dc.contributor.authorLiu, Liling
dc.date.accessioned2022-10-05T15:53:23Z
dc.date.available2023-11-05 11:53:11en
dc.date.available2022-10-05T15:53:23Z
dc.date.issued2022-10
dc.identifier.citationKong, Weibo; Wei, Xiaorong; Wu, Yonghong; Shao, Mingan; Zhang, Qian; Sadowsky, Michael J.; Ishii, Satoshi; Reich, Peter B.; Wei, Gehong; Jiao, Shuo; Qiu, Liping; Liu, Liling (2022). "Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region." Global Change Biology (20): 6086-6101.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/174957
dc.description.abstractAfforestation is an effective approach to rehabilitate degraded ecosystems, but often depletes deep soil moisture. Presently, it is not known how an afforestation-induced decrease in moisture affects soil microbial community and functionality, hindering our ability to understand the sustainability of the rehabilitated ecosystems. To address this issue, we examined the impacts of 20 years of afforestation on soil bacterial community, co-occurrence pattern, and functionalities along vertical profile (0–500 cm depth) in a semiarid region of China’s Loess Plateau. We showed that the effects of afforestation with a deep-rooted legume tree on cropland were greater in deep than that of in top layers, resulting in decreased bacterial beta diversity, more responsive bacterial taxa and functional groups, increased homogeneous selection, and decreased network robustness in deep soils (120–500 cm). Organic carbon and nitrogen decomposition rates and multifunctionality also significantly decreased by afforestation, and microbial carbon limitation significantly increased in deep soils. Moreover, changes in microbial community and functionality in deep layer was largely related to changes in soil moisture. Such negative impacts on deep soils should be fully considered for assessing afforestation’s eco-environment effects and for the sustainability of ecosystems because deep soils have important influence on forest ecosystems in semiarid and arid climates.How afforestation-induced deep soil desiccation affects soil microbes in arid and semiarid climates was never examined before. Here we show that afforestation decreased bacterial beta diversity, network robustness, and functionality in deep soils (120-500 cm), and that such effects were closely related to reduced soil moisture after afforestation. Our findings provide new understandings regarding the relationship between land-use change and microbes, and highlight that such negative impacts on deep soils should be fully considered for assessing afforestation’s eco-environment effects and for the sustainability of ecosystems in arid and semiarid regions.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdeep soil layers
dc.subject.othermicrobial diversity
dc.subject.othersemiarid region
dc.subject.otherafforestation
dc.subject.othermicrobial network
dc.subject.othermultifunctionality
dc.titleAfforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174957/1/gcb16334.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174957/2/gcb16334_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174957/3/gcb16334-sup-0001-DataS1.pdf
dc.identifier.doi10.1111/gcb.16334
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferencePeng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., & Zhou, X. ( 2011 ). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467 – 471. https://doi.org/10.1038/nclimate1293
dc.identifier.citedreferenceOliveira, R. S., Bezerra, L., Davidson, E. A., Pinto, F., Klink, C. A., Nepstad, D. C., & Moreira, A. ( 2005 ). Deep root function in soil water dynamics in cerrado savannas of Central Brazil. Functional Ecology, 19, 574 – 581. https://doi.org/10.1111/j.1365-2435.2005.01003.x
dc.identifier.citedreferencePlaza, C., Zaccone, C., Sawicka, K., Mendez, A. M., Tarquis, A., Gasco, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. ( 2018 ). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8, 13788. https://doi.org/10.1038/s41598-018-32229-0
dc.identifier.citedreferencePeng, G. S., & Wu, J. ( 2016 ). Optimal network topology for structural robustness based on natural connectivity. Physica A: Statistical Mechanics and its Applications, 443, 212 – 220. https://doi.org/10.1016/j.physa.2015.09.023
dc.identifier.citedreferencePrice, M. N., Dehal, P. S., & Arkin, A. P. ( 2010 ). FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One, 5, e9490. https://doi.org/10.1371/journal.pone.0009490
dc.identifier.citedreferenceQiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X., Shao, M., Liu, B., Jiao, H., Li, H., & Wei, X. ( 2021 ). Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal, 15, 2474 – 2489. https://doi.org/10.1038/s41396-021-00913-1
dc.identifier.citedreferenceRichter, D. D., Markewitz, D., Trumbore, S. E., & Wells, C. G. ( 1999 ). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56 – 28. https://doi.org/10.1038/21867
dc.identifier.citedreferenceSchimel, J., Balser, T. C., & Wallenstein, M. ( 2007 ). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88, 1386 – 1394. https://doi.org/10.1890/06-0219
dc.identifier.citedreferenceSchimel, J. P. ( 2018 ). Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics, 49, 409 – 432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
dc.identifier.citedreferenceSchlaepfer, D. R., Bradford, J. B., Lauenroth, W. K., Munson, S. M., Tietjen, B., Hall, S. A., Wilson, S. D., Duniway, M. C., Jia, G., Pyke, D. A., Lkhagva, A., & Jamiyansharav, K. ( 2017 ). Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8, 14196. https://doi.org/10.1038/ncomms14196
dc.identifier.citedreferenceSchlatter, D. C., Kahl, K., Carlson, B., Huggins, D. R., & Paulitz, T. ( 2020 ). Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biology and Biochemistry, 149, 107939. https://doi.org/10.1016/j.soilbio.2020.107939
dc.identifier.citedreferenceShao, M., Jia, X., Wang, Y., & Zhu, Y. ( 2016 ). A review of studies on dried soil layers in the loess plateau. Advances in Earth Science, 31, 14 – 22. https://doi.org/10.11867/j.issn.1001-8166.2016.01.0014 (in Chinese with English Abstract).
dc.identifier.citedreferenceShi, Y., Zhang, K., Li, Q., Liu, X., He, J. S., & Chu, H. ( 2020 ). Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan plateau grassland. Science of the Total Environment, 714, 136794. https://doi.org/10.1016/j.scitotenv.2020.136794
dc.identifier.citedreferenceStegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., Rockhold, M. L., & Konopka, A. ( 2013 ). Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069 – 2079. https://doi.org/10.1038/ismej.2013.93
dc.identifier.citedreferenceStegen, J. C., Lin, X., Fredrickson, J. K., & Konopka, A. E. ( 2015 ). Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 6, 370. https://doi.org/10.3389/fmicb.2015.00370
dc.identifier.citedreferenceStegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. ( 2012 ). Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653 – 1664. https://doi.org/10.1038/ismej.2012.22
dc.identifier.citedreferenceStewart, C. E., Roosendaal, D., Denef, K., Pruessner, E., Comas, L. H., Sarath, G., Jin, V. L., Schmer, M. R., & Soundararajan, M. ( 2017 ). Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought. Soil Biology and Biochemistry, 112, 191 – 203. https://doi.org/10.1016/j.soilbio.2017.04.021
dc.identifier.citedreferenceTripathi, B. M., Stegen, J. C., Kim, M., Dong, K., Adams, J. M., & Lee, Y. K. ( 2018 ). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 12, 1072 – 1083. https://doi.org/10.1038/s41396-018-0082-4
dc.identifier.citedreferenceUpton, R. N., Checinska Sielaff, A., Hofmockel, K. S., Xu, X., Polley, H. W., & Wilsey, B. J. ( 2020 ). Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere, 11, e02973. https://doi.org/10.1002/ecs2.2973
dc.identifier.citedreferenceWang, L., Wang, Q., Wei, S., Shao, M., & Li, Y. ( 2008 ). Soil desiccation for loess soils on natural and regrown areas. Forest Ecology and Management, 255, 2467 – 2477. https://doi.org/10.1016/j.foreco.2008.01.006
dc.identifier.citedreferenceWang, S., Fu, B., Gao, G., Yao, X., & Zhou, J. ( 2012 ). Soil moisture and evapotranspiration of different land cover types in the loess plateau, China. Hydrology and Earth System Sciences, 16, 2883 – 2892. https://doi.org/10.5194/hess-16-2883-2012
dc.identifier.citedreferenceWang, S., Fu, B., Piao, S., Lü, Y., Ciais, P., Feng, X., & Wang, Y. ( 2016 ). Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9, 38 – 41. https://doi.org/10.1038/ngeo2602
dc.identifier.citedreferenceWang, S., Wang, X. B., Han, X. G., & Deng, Y. ( 2018 ). Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Global Ecology and Biogeography, 27, 570 – 580. https://doi.org/10.1111/geb.12718
dc.identifier.citedreferenceWang, Y., Li, C., Tu, B., Kou, Y., & Li, X. ( 2021 ). Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biology and Biochemistry, 160, 108338. https://doi.org/10.1016/j.soilbio.2021.108338
dc.identifier.citedreferenceWang, Z., Liu, B., Liu, G., & Zhang, Y. ( 2009 ). Soil water depletion depth by planted vegetation on the loess plateau. Science in China Series D: Earth Sciences, 52, 835 – 842. https://doi.org/10.1007/s11430-009-0087-y
dc.identifier.citedreferenceWei, X., Ma, T., Wang, Y., Wei, Y., Hao, M., Shao, M., & Zhang, X. ( 2016 ). Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem. Geoderma, 272, 1 – 9. https://doi.org/10.1016/j.geoderma.2016.02.027
dc.identifier.citedreferenceWei, X., Qiu, L., Shao, M., Zhang, X., & Gale, W. J. ( 2012 ). The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland. PLoS One, 7, e32054. https://doi.org/10.1371/journal.pone.0032054
dc.identifier.citedreferenceWu, M., Chen, S., Chen, J., Xue, K., Chen, S., Wang, X., Chen, T., Kang, S., Rui, J., Thies, J. E., Bardgett, R. D., & Wang, Y. ( 2021 ). Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America, 118, e2025321118. https://doi.org/10.1073/pnas.2025321118
dc.identifier.citedreferenceXu, L., He, N., Li, X., Cao, H., Li, C., Wang, R., Wang, C., Yao, M., Zhou, S., & Wang, J. ( 2021 ). Local community assembly processes shape β-diversity of soil phoD-harbouring communities in the northern hemisphere steppes. Global Ecology and Biogeography, 00, 1 – 13. https://doi.org/10.1111/geb.13385
dc.identifier.citedreferenceYang, L., Wei, W., Chen, L., Jia, F., & Mo, B. ( 2012 ). Spatial variation of shallow and deep soil moisture in the semi-arid loess hilly area, China. Hydrology and Earth System Sciences, 9, 4553 – 4586. https://doi.org/10.5194/hess-16-3199-2012
dc.identifier.citedreferenceYao, Y., Ge, N., Yu, S., Wei, X., Wang, X., Jin, J., Liu, X., Shao, M., Wei, Y., & Kang, L. ( 2019 ). Response of aggregate associated organic carbon, nitrogen and phosphorous to re-vegetation in agro-pastoral ecotone of northern China. Geoderma, 341, 172 – 180. https://doi.org/10.1016/j.geoderma.2019.01.036
dc.identifier.citedreferenceYin, R., Deng, H., Wang, H., & Zhang, B. ( 2014 ). Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena, 115, 96 – 103. https://doi.org/10.1016/j.catena.2013.11.015
dc.identifier.citedreferenceYu, Y., Lee, C., Kim, J., & Hwang, S. ( 2005 ). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89, 670 – 679. https://doi.org/10.1002/bit.20347
dc.identifier.citedreferenceZhong, Z., Li, W., Lu, X., Gu, Y., Wu, S., Shen, Z., Han, X., Yang, G., & Ren, C. ( 2020 ). Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the loess plateau, China. Soil Biology and Biochemistry, 151, 108048. https://doi.org/10.1016/j.soilbio.2020.108048
dc.identifier.citedreferenceBalogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., & Nagy, Z. ( 2011 ). Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO 2 uptake in dry grasslands. Soil Biology and Biochemistry, 43, 1006 – 1013. https://doi.org/10.1016/j.soilbio.2011.01.017
dc.identifier.citedreferenceBanerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B. C., & Siciliano, S. D. ( 2016 ). Legacy effects of soil moisture on microbial community structure and N 2 O emissions. Soil Biology and Biochemistry, 95, 40 – 50. https://doi.org/10.1016/j.soilbio.2015.12.004
dc.identifier.citedreferenceBarnard, R. L., Osborne, C. A., & Firestone, M. K. ( 2013 ). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7, 2229 – 2241. https://doi.org/10.1038/ismej.2013.104
dc.identifier.citedreferenceBenjamini, Y., & Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289 – 300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
dc.identifier.citedreferenceBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., … Caporaso, J. G. ( 2019 ). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852 – 857. https://doi.org/10.1038/s41587-019-0209-9
dc.identifier.citedreferenceBromke, M. A. ( 2013 ). Amino acid biosynthesis pathways in diatoms. Metabolites, 3, 294 – 311. https://doi.org/10.3390/metabo3020294
dc.identifier.citedreferenceCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. ( 2016 ). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581 – 583. https://doi.org/10.1038/nmeth.3869
dc.identifier.citedreferenceCao, S., Chen, L., & Yu, X. ( 2009 ). Impact of China’s grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. Journal of Applied Ecology, 46, 536 – 543. https://doi.org/10.1111/j.1365-2664.2008.01605.x
dc.identifier.citedreferenceChen, H., Shao, M., & Li, Y. ( 2008 ). Soil desiccation in the loess plateau of China. Geoderma, 143, 91 – 100. https://doi.org/10.1016/j.geoderma.2007.10.013
dc.identifier.citedreferenceChen, L., Yang, Y., Deng, S., Xu, Y., Wang, G., & Liu, Y. ( 2012 ). The response of carbohydrate metabolism to the fluctuation of relative humidity (RH) in the desert soil cyanobacterium Phormidium tenue. European Journal of Soil Biology, 48, 11 – 16. https://doi.org/10.1016/j.ejsobi.2011.10.002
dc.identifier.citedreferenceChen, Y., Neilson, J. W., Kushwaha, P., Maier, R. M., & Barberan, A. ( 2020 ). Life-history strategies of soil microbial communities in an arid ecosystem. The ISME Journal, 15, 649 – 657. https://doi.org/10.1038/s41396-020-00803-y
dc.identifier.citedreferenceChen, Y., Wang, K., Lin, Y., Shi, W., Song, Y., & He, X. ( 2015 ). Balancing green and grain trade. Nature Geoscience, 8, 739 – 741. https://doi.org/10.1038/ngeo2544
dc.identifier.citedreferenceCorrigan, R. M., Bowman, L., Willis, A. R., Kaever, V., & Grundling, A. ( 2015 ). Crosstalk between two nucleotide-signaling pathways in Staphylococcus aureus. Journal of Biological Chemistry, 290, 5826 – 5839. https://doi.org/10.1074/jbc.M114.598300
dc.identifier.citedreferenceShipley, B. ( 2009 ). Confirmatory path analysis in a generalized multilevel context. Ecology, 90, 363 – 368. https://doi.org/10.1890/08-1034.1
dc.identifier.citedreferenceCrowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., & Maynard, D. S. ( 2019 ). The global soil community and its influence on biogeochemistry. Science, 365, 772. https://doi.org/10.1126/science.aav0550
dc.identifier.citedreferenceCui, Y., Fang, L., Guo, X., Han, F., Ju, W., Ye, L., Wang, X., Tan, W., & Zhang, X. ( 2019 ). Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 648, 388 – 397. https://doi.org/10.1016/j.scitotenv.2018.08.173
dc.identifier.citedreferenceDavidson, E., Lefebvre, P. A., Brando, P. M., Ray, D. M., Trumbore, S. E., Solorzano, L. A., Ferreira, J. N., Bustamante, M., & Nepstad, D. C. ( 2011 ). Carbon inputs and water uptake in deep soils of an eastern Amazon forest. Forest Science, 57, 51 – 58. https://doi.org/10.1093/forestscience/57.1.51
dc.identifier.citedreferencede Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., Hallin, S., Kaisermann, A., Keith, A. M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K. E., Oliver, A., Ostle, N., Prosser, J. I., Thion, C., Thomson, B., & Bardgett, R. D. ( 2018 ). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033. https://doi.org/10.1038/s41467-018-05516-7
dc.identifier.citedreferenceDelgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., Ochoa, V., Gozalo, B., Garcia-Gomez, M., Soliveres, S., Garcia-Palacios, P., Berdugo, M., Valencia, E., Escolar, C., Arredondo, T., Barraza-Zepeda, C., Bran, D., Carreira, J. A., Chaieb, M., … Zaady, E. ( 2013 ). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672 – 676. https://doi.org/10.1038/nature12670
dc.identifier.citedreferenceDelgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. ( 2016 ). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541
dc.identifier.citedreferenceDeng, L., Han, Q., Zhang, C., Tang, Z., & Shangguan, Z. ( 2017 ). Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degradation and Development, 28, 906 – 917. https://doi.org/10.1002/ldr.2642
dc.identifier.citedreferenceDeng, Y., Wang, S., Bai, X., Luo, G., Wu, L., Chen, F., Wang, J., Li, C., Yang, Y., Hu, Z., Tian, S., & Lu, Q. ( 2020 ). Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agricultural and Forest Meteorology, 292-293, 108103. https://doi.org/10.1016/j.agrformet.2020.108103
dc.identifier.citedreferenceEvans, S. E., & Wallenstein, M. D. ( 2014 ). Climate change alters ecological strategies of soil bacteria. Ecology Letters, 17, 155 – 164. https://doi.org/10.1111/ele.12206
dc.identifier.citedreferenceFan, K., Weisenhorn, P., Gilbert, J. A., & Chu, H. ( 2018 ). Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology & Biochemistry, 125, 251 – 260. https://doi.org/10.1016/j.soilbio.2018.07.022
dc.identifier.citedreferenceFierer, N., Schimel, J. P., & Holden, P. A. ( 2003 ). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35, 167 – 176. https://doi.org/10.1016/S0038-0717(02)00251-1
dc.identifier.citedreferenceFrey, B., Walthert, L., Perez-Mon, C., Stierli, B., Köchli, R., Dharmarajah, A., & Brunner, I. ( 2021 ). Deep soil layers of drought-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology, 12, 674160. https://doi.org/10.3389/fmicb.2021.674160
dc.identifier.citedreferenceFu, B., Wang, S., Liu, Y., Liu, J., Liang, W., & Miao, C. ( 2017 ). Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the loess plateau of China. Annual Review of Earth and Planetary Sciences, 45, 223 – 243. https://doi.org/10.1146/annurev-earth-063016-020552
dc.identifier.citedreferenceFuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., & Richter, A. ( 2014 ). Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, 201, 916 – 927. https://doi.org/10.1111/nph.12569
dc.identifier.citedreferenceGiacometti, C., Cavani, L., Baldoni, G., Ciavatta, C., Marzadori, C., & Kandeler, E. ( 2014 ). Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Applied Soil Ecology, 75, 80 – 85. https://doi.org/10.1016/j.apsoil.2013.10.009
dc.identifier.citedreferenceGiannetta, B., Plaza, C., Vischetti, C., Cotrufo, M. F., & Zaccone, C. ( 2018 ). Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biology and Fertility of Soils, 54, 671 – 681. https://doi.org/10.1007/s00374-018-1290-9
dc.identifier.citedreferenceGoulden, M. L., & Bales, R. C. ( 2019 ). California forest die-off linked to multi-year deep soil drying in 2012-2015 drought. Nature Geoscience, 12, 632 – 637. https://doi.org/10.1038/s41561-019-0388-5
dc.identifier.citedreferenceHan, X., Ren, C., Li, B., Yan, S., Fu, S., Gao, D., Zhao, F., Deng, J., & Yang, G. ( 2019 ). Growing seasonal characteristics of soil and plants control the temporal patterns of bacterial communities following afforestation. Catena, 178, 288 – 297. https://doi.org/10.1016/j.catena.2019.03.021
dc.identifier.citedreferenceHernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A., & Afkhami, M. E. ( 2021 ). Environmental stress destabilizes microbial networks. The ISME Journal, 15, 1722 – 1734. https://doi.org/10.1038/s41396-020-00882-x
dc.identifier.citedreferenceHu, W., Ran, J., Dong, L., Du, Q., Ji, M., Yao, S., Sun, Y., Gong, C., Hou, Q., Gong, H., Chen, R., Lu, J., Xie, S., Wang, Z., Huang, H., Li, X., Xiong, J., Xia, R., Wei, M., … Deng, J. ( 2021 ). Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350. https://doi.org/10.1038/s41467-021-25641-0
dc.identifier.citedreferenceHu, Y., Zhang, Z., Huang, L., Qi, Q., Liu, L., Zhao, Y., Wang, Z., Zhou, H., Lv, X., Mao, Z., Yang, Y., Zhou, J., & Kardol, P. ( 2019 ). Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence. Geoderma, 347, 126 – 134. https://doi.org/10.1016/j.geoderma.2019.03.046
dc.identifier.citedreferenceJansson, J. K., & Hofmockel, K. S. ( 2020 ). Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35 – 46. https://doi.org/10.1038/s41579-019-0265-7
dc.identifier.citedreferenceJia, X., Shao, M., Wei, X., Zhu, Y., Wang, Y., & Hu, W. ( 2020 ). Policy development for sustainable soil water use on China’s loess plateau. Science Bulletin, 65, 2053 – 2056. https://doi.org/10.1016/j.scib.2020.09.006
dc.identifier.citedreferenceJia, X., Shao, M., Zhu, Y., & Luo, Y. ( 2017 ). Soil moisture decline due to afforestation across the loess plateau, China. Journal of Hydrology, 546, 113 – 122. https://doi.org/10.1016/j.jhydrol.2017.01.011
dc.identifier.citedreferenceJiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. ( 2018 ). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6, 146. https://doi.org/10.1186/s40168-018-0526-0
dc.identifier.citedreferenceKatoh, K., & Frith, M. C. ( 2012 ). Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics, 28, 3144 – 3146. https://doi.org/10.1093/bioinformatics/bts578
dc.identifier.citedreferenceKeesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. ( 2016 ). The significance of soils and soil science towards realization of the United Nations sustainable development goals. The Soil, 2, 111 – 128. https://doi.org/10.5194/soil-2-111-2016
dc.identifier.citedreferenceKieft, T. L., Soroker, E., & Firestone, M. K. ( 1987 ). Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry, 19, 119 – 126. https://doi.org/10.1016/0038-0717(87)90070-8
dc.identifier.citedreferenceKnoke, T., Bendix, J., Pohle, P., Hamer, U., Hildebrandt, P., Roos, K., Gerique, A., Sandoval, M. L., Breuer, L., Tischer, A., Silva, B., Calvas, B., Aguirre, N., Castro, L. M., Windhorst, D., Weber, M., Stimm, B., Gunter, S., Palomeque, X., … Beck, E. ( 2014 ). Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nature Communications, 5, 5612. https://doi.org/10.1038/ncomms6612
dc.identifier.citedreferenceLaganiere, J., Angers, D. A., & Pare, D. ( 2010 ). Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 16, 439 – 453. https://doi.org/10.1111/j.1365-2486.2009.01930.x
dc.identifier.citedreferenceLai, J., Zou, Y., Zhang, J., & Peres-Neto, P. ( 2022 ). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.Hp R package. Methods in Ecology and Evolution, 00, 1 – 7. https://doi.org/10.1111/2041-210X.13800
dc.identifier.citedreferenceLeibold, M. A., & McPeek, M. A. ( 2006 ). Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399 – 1410. https://doi.org/10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
dc.identifier.citedreferenceLeizeaga, A., Hicks, L. C., Manoharan, L., Hawkes, C. V., Rousk, J., & Wilson, G. ( 2020 ). Drought legacy affects microbial community trait distributions related to moisture along a savannah grassland precipitation gradient. Journal of Ecology, 00, 1 – 16. https://doi.org/10.1111/1365-2745.13550
dc.identifier.citedreferenceLi, B., Li, P., Zhang, W., Ji, J., Liu, G., & Xu, M. ( 2021 ). Deep soil moisture limits the sustainable vegetation restoration in arid and semi-arid loess plateau. Geoderma, 399, 115122. https://doi.org/10.1016/j.geoderma.2021.115122
dc.identifier.citedreferenceLiang, M., Johnson, D., Burslem, D. F. R. P., Yu, S., Fang, M., Taylor, J. D., Taylor, A. F. S., Helgason, T., & Liu, X. ( 2020 ). Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 11, 2636. https://doi.org/10.1038/s41467-020-16507-y
dc.identifier.citedreferenceLiu, Y., Song, H., An, Z., Sun, C., Trouet, V., Cai, Q., Liu, R., Leavitt, S. W., Song, Y., Li, Q., Fang, C., Zhou, W., Yang, Y., Jin, Z., Wang, Y., Sun, J., Mu, X., Lei, Y., Wang, L., … Zeng, X. ( 2020 ). Recent anthropogenic curtailing of Yellow River runoff and sediment load is unprecedented over the past 500 y. Proceedings of the National Academy of Sciences of the United States of America, 117, 18251 – 18257. https://doi.org/10.1073/pnas.1922349117
dc.identifier.citedreferenceMalik, A. A., Swenson, T., Weihe, C., Morrison, E. W., Martiny, J. B. H., Brodie, E. L., Northen, T. R., & Allison, S. D. ( 2020 ). Drought and plant litter chemistry alter microbial gene expression and metabolite production. The ISME Journal, 14, 2236 – 2247. https://doi.org/10.1038/s41396-020-0683-6
dc.identifier.citedreferenceMcGulley, R. L., Jobbágy, E. G., Pockman, W. T., & Jackson, R. B. ( 2004 ). Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 141, 620 – 628. https://doi.org/10.1007/s00442-004-1687-z
dc.identifier.citedreferenceMeisner, A., Snoek, B. L., Nesme, J., Dent, E., Jacquiod, S., Classen, A. T., & Prieme, A. ( 2021 ). Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. The ISME Journal, 15, 1207 – 1221. https://doi.org/10.1038/s41396-020-00844-3
dc.identifier.citedreferenceMeisser, M., Vitra, A., Deléglise, C., Dubois, S., Probo, M., Mosimann, E., Buttler, A., & Mariotte, P. ( 2019 ). Nutrient limitations induced by drought affect forage N and P differently in two permanent grasslands. Agriculture, Ecosystems and Environment, 280, 85 – 94. https://doi.org/10.1016/j.agee.2019.04.027
dc.identifier.citedreferenceShipley, B. ( 2013 ). The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology, 94, 560 – 564. https://doi.org/10.1890/12-0976.1
dc.identifier.citedreferenceMo, Y., Peng, F., Gao, X., Xiao, P., Logares, R., Jeppesen, E., Ren, K., Xue, Y., & Yang, J. ( 2021 ). Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 9, 128. https://doi.org/10.1186/s40168-021-01079-w
dc.identifier.citedreferenceMoorhead, D. L., Rinkes, Z. L., Sinsabaugh, R. L., & Weintraub, M. N. ( 2013 ). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. https://doi.org/10.3389/fmicb.2013.00223
dc.identifier.citedreferenceMukhopadhyay, S., & Joy, V. C. ( 2010 ). Influence of leaf litter types on microbial functions and nutrient status of soil: Ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biology and Biochemistry, 42, 2306 – 2315. https://doi.org/10.1016/j.soilbio.2010.09.007
dc.identifier.citedreferenceMuyzer, G., de Waal, E. C., & Uitterlinden, A. G. ( 1993 ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695 – 700. https://doi.org/10.1128/aem.59.3.695-700.1993
dc.identifier.citedreferenceNa, X., Yu, H., Wang, P., Zhu, W., Niu, Y., & Huang, J. ( 2019 ). Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China. Soil Biology and Biochemistry, 136, 107520. https://doi.org/10.1016/j.soilbio.2019.107520
dc.identifier.citedreferenceNavarrete, A. A., Tsai, S. M., Mendes, L. W., Faust, K., de Hollander, M., Cassman, N. A., Raes, J., van Veen, J. A., & Kuramae, E. E. ( 2015 ). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24, 2433 – 2448. https://doi.org/10.1111/mec.13172
dc.identifier.citedreferenceNaylor, D., & Coleman-Derr, D. ( 2017 ). Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 8, 2223. https://doi.org/10.3389/fpls.2017.02223
dc.identifier.citedreferenceOchoa-Hueso, R., Collins, S. L., Delgado-Baquerizo, M., Hamonts, K., Pockman, W. T., Sinsabaugh, R. L., Smith, M. D., Knapp, A. D., & Power, S. A. ( 2018 ). Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 24, 2818 – 2827. https://doi.org/10.1111/gcb.14113
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.