Show simple item record

Feasibility of ultrasound tomography–guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies

dc.contributor.authorPattyn, Alexander
dc.contributor.authorKratkiewicz, Karl
dc.contributor.authorAlijabbari, Naser
dc.contributor.authorCarson, Paul L.
dc.contributor.authorLittrup, Peter
dc.contributor.authorFowlkes, J. Brian
dc.contributor.authorDuric, Nebojsa
dc.contributor.authorMehrmohammadi, Mohammad
dc.date.accessioned2022-10-05T15:53:42Z
dc.date.available2023-10-05 11:53:39en
dc.date.available2022-10-05T15:53:42Z
dc.date.issued2022-09
dc.identifier.citationPattyn, Alexander; Kratkiewicz, Karl; Alijabbari, Naser; Carson, Paul L.; Littrup, Peter; Fowlkes, J. Brian; Duric, Nebojsa; Mehrmohammadi, Mohammad (2022). "Feasibility of ultrasound tomography–guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies." Medical Physics 49(9): 6120-6136.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/174964
dc.description.abstractBackgroundAs of 2022, breast cancer continues to be the most diagnosed cancer worldwide. This problem persists within the United States as well, as the American Cancer Society has reported that ∼12.5% of women will be diagnosed with invasive breast cancer over the course of their lifetime. Therefore, a clinical need continues to exist to address this disease from a treatment and therapeutic perspective. Current treatments for breast cancer and cancers more broadly include surgery, radiation, and chemotherapy. Adjuncts to these methods have been developed to improve the clinical outcomes for patients. One such adjunctive treatment is mild hyperthermia therapy (MHTh), which has been shown to be successful in the treatment of cancers by increasing effectiveness and reduced dosage requirements for radiation and chemotherapies. MHTh-assisted treatments can be performed with invasive thermal devices, noninvasive microwave induction, heating and recirculation of extracted patient blood, or whole-body hyperthermia with hot blankets.PurposeOne common method for inducing MHTh is by using microwave for heat induction and magnetic resonance imaging for temperature monitoring. However, this leads to a complex, expensive, and inaccessible therapy platform. Therefore, in this work we aim to show the feasibility of a novel all-acoustic MHTh system that uses focused ultrasound (US) to induce heating while also using US tomography (UST) to provide temperature estimates. Changes in sound speed (SS) have been shown to be strongly correlated with temperature changes and can therefore be used to indirectly monitor heating throughout the therapy. Additionally, these SS estimates allow for heterogeneous SS-corrected phase delays when heating complex and heterogeneous tissue structures.MethodsFeasibility to induce localized heat in tissue was investigated in silico with a simulated breast model, including an embedded tumor using continuous wave US. Here, both heterogenous acoustic and thermal properties were modeled in addition to blood perfusion. We further demonstrate, with ex vivo tissue phantoms, the feasibility of using ring-based UST to monitor temperature by tracking changes in SS. Two phantoms (lamb tissue and human abdominal fat) with latex tubes containing varied temperature flowing water were imaged. The measured SS of the water at each temperature were compared against values that are reported in literature.ResultsResults from ex vivo tissue studies indicate successful tracking of temperature under various phantom configurations and ranges of water temperature. The results of in silico studies show that the proposed system can heat an acoustically and thermally heterogenous breast model to the clinically relevant temperature of 42°C while accounting for a reasonable time needed to image the current cross section (200 ms). Further, we have performed an initial in silico study demonstrating the feasibility of adjusting the transmit waveform frequency to modify the effective heating height at the focused region. Lastly, we have shown in a simpler 2D breast model that MHTh level temperatures can be maintained by adjusting the transmit pressure intensity of the US ring.ConclusionsThis work has demonstrated the feasibility of using a 256-element ring array transducer for temperature monitoring; however, future work will investigate minimizing the difference between measured SS and the values shown in literature. A hypothesis attributes this bias to potential volumetric average artifacts from the ray-based SS inversion algorithm that was used, and that moving to a waveform-based SS inversion algorithm will greatly improve the SS estimates. Additionally, we have shown that an all-acoustic MHTh system is feasible via in silico studies. These studies have indicated that the proposed system can heat a tumor within a heterogenous breast model to 42°C within a narrow time frame. This holds great promise for increasing the accessibility and reducing the complexity of a future all-acoustic MHTh system.
dc.publisherUniversity of Oxford
dc.publisherWiley Periodicals, Inc.
dc.subject.otherex vivo
dc.subject.otherin silico
dc.subject.othermild hyperthermia
dc.subject.otherring transducer
dc.subject.othersound speed
dc.subject.otherthermometry
dc.subject.othertomography
dc.subject.otherultrasound
dc.titleFeasibility of ultrasound tomography–guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174964/1/mp15829_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174964/2/mp15829.pdf
dc.identifier.doi10.1002/mp.15829
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceVaezy S, Shi X, Martin RW, et al. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol. 2001; 27 ( 1 ): 33 - 42.
dc.identifier.citedreferenceVarghese T, Zagzebski J, Chen Q, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: preliminary in-vivo results. Ultrasound Med Biol. 2002; 28 ( 3 ): 321 - 329.
dc.identifier.citedreferenceLittrup PJ, Duric N, Sak M, et al. Multicenter study of whole breast stiffness imaging by ultrasound tomography (SoftVue) for characterization of breast tissues and masses. J Clin Med. 2021; 10 ( 23 ): 5528.
dc.identifier.citedreferenceSieve R. Ultrasound Imaging. Radiology Key blog; 2020. https://radiologykey.com/ultrasound-imaging-3/
dc.identifier.citedreferenceDance D, Christofides S, Maidment A, McLean I, Ng K. Diagnostic Radiology Physics: A Handbook for Teachers and Students. Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics; 2014
dc.identifier.citedreferenceMannaris C, Efthymiou E, Meyre ME, Averkiou MA. In vitro localized release of thermosensitive liposomes with ultrasound-induced hyperthermia. Ultrasound Med Biol. 2013; 39 ( 11 ): 2011 - 2020.
dc.identifier.citedreferenceDuric N, Littrup P, Roy O, et al. Clinical breast imaging with ultrasound tomography: a description of the SoftVue system. J Acoust Soc Am. 2014; 135 ( 4 ): 2155 - 2155.
dc.identifier.citedreferenceLiu D, Ebbini ES. Real-time 2-D temperature imaging using ultrasound. IEEE Trans Biomed Eng. 2009; 57 ( 1 ): 12 - 16.
dc.identifier.citedreferenceEbbini ES, Ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia. 2015; 31 ( 2 ): 77 - 89.
dc.identifier.citedreferenceDuric N, Littrup P, Poulo L, et al. Detection of breast cancer with ultrasound tomography: first results with the computed ultrasound risk evaluation (CURE) prototype. Med Phys. 2007; 34 ( 2 ): 773 - 785.
dc.identifier.citedreferencePattyn A, Kratkiewicz K, Alijabbari N, Mehrmohammadi M, Duric N, Carson PL. Mild-Hyperthermia Generation and Control with a Ring-based Ultrasound Tomography. IEEE; 2021: 1 - 4.
dc.identifier.citedreferenceMalik B, Terry R, Wiskin J, Lenox M. Quantitative transmission ultrasound tomography: imaging and performance characteristics. Med Phys. 2018; 45 ( 7 ): 3063 - 3075.
dc.identifier.citedreferenceGemmeke H, Hopp T, Zapf M, Kaiser C, Ruiter NV. 3D ultrasound computer tomography: hardware setup, reconstruction methods and first clinical results. Nucl Instrum Methods Phys Res A. 2017; 873: 59 - 65.
dc.identifier.citedreferenceBrenders A, Pratt R. Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophys J Int. 2007; 168 ( 1 ): 133 - 151.
dc.identifier.citedreferenceSandhu G, Li C, Roy O, Schmidt S, Duric N. Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer. Phys Med Biol. 2015; 60 ( 14 ): 5381.
dc.identifier.citedreferenceLi C, Duric N, Huang L. Clinical Breast Imaging Using Sound-Speed Reconstructions of Ultrasound Tomography Data. SPIE; 2008: 78 - 86.
dc.identifier.citedreferencePaige CC, Saunders MA. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw. 1982; 8 ( 1 ): 43 - 71.
dc.identifier.citedreferenceKlimeš L. Grid travel-time tracing: second-order method for the first arrivals in smooth media. Pure Appl Geophys. 1996; 148 ( 3 ): 539 - 563.
dc.identifier.citedreferenceAbràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004; 11 ( 7 ): 36 - 42.
dc.identifier.citedreferenceTreeby BE, Cox BT. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010; 15 ( 2 ): 021314.
dc.identifier.citedreferenceLou Y, Zhou W, Matthews TP, Appleton CM, Anastasio MA. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging. J Biomed Opt. 2017; 22 ( 4 ): 041015.
dc.identifier.citedreferenceHasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Lloyd B, Gosselin MC, Payne D, Klingenböck A, Kuster N. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.1, Feb 22, 2022, https://doi.org/10.13099/VIP21000-04-1.itis.swiss/database
dc.identifier.citedreferenceAbsalan H, SalmanOgli A, Rostami R, Maghoul A. Simulation and investigation of quantum dot effects as internal heat-generator source in breast tumor site. J Therm Biol. 2012; 37 ( 7 ): 490 - 495.
dc.identifier.citedreferenceDuck F. Physical Properties of Tissue: A Comprehensive Reference Book. Academic; 1990.
dc.identifier.citedreferenceNam K, Zagzebski JA, Hall TJ. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter. Ultrason Imaging. 2013; 35 ( 2 ): 146 - 161.
dc.identifier.citedreferenceGonzález FJ. Thermal simulation of breast tumors. Rev Mex Fís. 2007; 53 ( 4 ): 323 - 326.
dc.identifier.citedreferenceLyon PC, Mannaris C, Gray M, et al. Large-volume hyperthermia for safe and cost-effective targeted drug delivery using a clinical ultrasound-guided focused ultrasound device. Ultrasound Med Biol. 2021; 47 ( 4 ): 982 - 997.
dc.identifier.citedreferencePoon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother. 2009; 10 ( 2 ): 333 - 343.
dc.identifier.citedreferenceWood BJ, Poon RT, Locklin JK, et al. Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Interv Radiol. 2012; 23 ( 2 ): 248 - 255.e7.
dc.identifier.citedreferenceAgudo OC, Guasch L, Huthwaite P, Warner M. ( 2018, January). 3D imaging of the breast using full-waveform inversion. In Proc. Int. Workshop Med. Ultrasound Tomogr. (pp. 99 - 110 ).
dc.identifier.citedreferenceWang K, Matthews T, Anis F, Li C, Duric N, Anastasio MA. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography. IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62 ( 3 ): 475 - 493.
dc.identifier.citedreferenceRoy O, Jovanović I, Hormati A, Parhizkar R, Vetterli M. Sound speed estimation using wave-based ultrasound tomography: theory and GPU implementation. Int Soc Opt Photonics. 2010; 7629: 76290J.
dc.identifier.citedreferenceAzhari H. Feasibility study of ultrasonic computed tomography–guided high-intensity focused ultrasound. Ultrasound Med Biol. 2012; 38 ( 4 ): 619 - 625.
dc.identifier.citedreferenceArruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011; 3 ( 3 ): 3279 - 3330.
dc.identifier.citedreferenceBaskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012; 9 ( 3 ): 193.
dc.identifier.citedreferencePerez-Añorve IX, Gonzalez-De la Rosa CH, Soto-Reyes E, et al. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol. 2019; 13 ( 5 ): 1249 - 1267.
dc.identifier.citedreferenceJameel J, Rao V, Cawkwell L, Drew P. Radioresistance in carcinoma of the breast. Breast. 2004; 13 ( 6 ): 452 - 460.
dc.identifier.citedreferenceChidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011; 14 ( 1 ): 67 - 77.
dc.identifier.citedreferenceStang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng. 2012; 59 ( 9 ): 2431 - 2438.
dc.identifier.citedreferenceDewey W. Interaction of heat with radiation and chemotherapy. Cancer Res. 1984; 44 ( 10 suppl): 4714s - 4720s.
dc.identifier.citedreferenceLyon P. Targeted Release from Lyso-Thermosensitive Liposomal Doxorubicin (ThermoDox®) Using Focused Ultrasound in Patients with Liver Tumours. University of Oxford; 2016.
dc.identifier.citedreferenceDunne M, Epp-Ducharme B, Sofias AM, Regenold M, Dubins DN, Allen C. Heat-activated drug delivery increases tumor accumulation of synergistic chemotherapies. J Control Release. 2019; 308: 197 - 208.
dc.identifier.citedreferenceSong CW, Shakil A, Griffin RJ, Okajima K. Improvement of tumor oxygenation status by mild temperature hyperthermia alone or in combination with carbogen. 1997; 24: 626 - 632.
dc.identifier.citedreferenceKampinga H, Dikomey E. Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol. 2001; 77 ( 4 ): 399 - 408.
dc.identifier.citedreferenceStoetzer O, Di Gioia D, Issels RD, et al. Post-neoadjuvant gemcitabine and cisplatin with regional hyperthermia for patients with triple-negative breast cancer and non-PCR after neoadjuvant chemotherapy: a single-institute experience. Breast Care. 2021; 16 ( 2 ): 173 - 180.
dc.identifier.citedreferenceDe-Colle C, Weidner N, Heinrich V, et al. Hyperthermic chest wall re-irradiation in recurrent breast cancer: a prospective observational study. Strahlenther Onkol. 2019; 195 ( 4 ): 318 - 326.
dc.identifier.citedreferenceMerten R, Ott O, Haderlein M, et al. Long-term experience of chemoradiotherapy combined with deep regional hyperthermia for organ preservation in high-risk bladder cancer (Ta, Tis, T1, T2). Oncologist. 2019; 24 ( 12 ): e1341.
dc.identifier.citedreferenceWittlinger M, Rödel CM, Weiss C, et al. Quadrimodal treatment of high-risk T1 and T2 bladder cancer: transurethral tumor resection followed by concurrent radiochemotherapy and regional deep hyperthermia. Radiother Oncol. 2009; 93 ( 2 ): 358 - 363.
dc.identifier.citedreferenceIssels RD, Lindner LH, Verweij J, et al. Effect of neoadjuvant chemotherapy plus regional hyperthermia on long-term outcomes among patients with localized high-risk soft tissue sarcoma: the EORTC 62961-ESHO 95 randomized clinical trial. JAMA Oncol. 2018; 4 ( 4 ): 483 - 492.
dc.identifier.citedreferenceAngele MK, Albertsmeier M, Prix NJ, et al. Effectiveness of regional hyperthermia with chemotherapy for high-risk retroperitoneal and abdominal soft-tissue sarcoma after complete surgical resection: a subgroup analysis of a randomized phase-III multicenter study. Ann Surg. 2014; 260 ( 5 ): 749.
dc.identifier.citedreferenceZwirner K, Bonomo P, Lamprecht U, Zips D, Gani C. External validation of a rectal cancer outcome prediction model with a cohort of patients treated with preoperative radiochemotherapy and deep regional hyperthermia. Int J Hyperthermia. 2018; 34 ( 4 ): 455 - 460.
dc.identifier.citedreferenceSchroeder C, Gani C, Lamprecht U, et al. Pathological complete response and sphincter-sparing surgery after neoadjuvant radiochemotherapy with regional hyperthermia for locally advanced rectal cancer compared with radiochemotherapy alone. Int J Hyperthermia. 2012; 28 ( 8 ): 707 - 714.
dc.identifier.citedreferenceTschoep-Lechner KE, Milani V, Berger F, et al. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer. Int J Hyperthermia. 2013; 29 ( 1 ): 8 - 16.
dc.identifier.citedreferenceMaluta S, Schaffer M, Pioli F, et al. Regional hyperthermia combined with chemoradiotherapy in primary or recurrent locally advanced pancreatic cancer. Strahlenther Onkol. 2011; 187 ( 10 ): 619.
dc.identifier.citedreferenceWestermann A, Mella O, Van Der Zee J, et al. Long-term survival data of triple modality treatment of stage IIB–III–IVA cervical cancer with the combination of radiotherapy, chemotherapy and hyperthermia – an update. Int J Hyperthermia. 2012; 28 ( 6 ): 549 - 553.
dc.identifier.citedreferenceHeijkoop ST, Franckena M, Thomeer MG, Boere IA, Van Montfort C, Van Doorn HC. Neoadjuvant chemotherapy followed by radiotherapy and concurrent hyperthermia in patients with advanced-stage cervical cancer: a retrospective study. Int J Hyperthermia. 2012; 28 ( 6 ): 554 - 561.
dc.identifier.citedreferenceFotopoulou C, Cho C-H, Kraetschell R, et al. Regional abdominal hyperthermia combined with systemic chemotherapy for the treatment of patients with ovarian cancer relapse: results of a pilot study. Int J Hyperthermia. 2010; 26 ( 2 ): 118 - 126.
dc.identifier.citedreferenceMaluta S, Dall’Oglio S, Romano M, et al. Conformal radiotherapy plus local hyperthermia in patients affected by locally advanced high risk prostate cancer: preliminary results of a prospective phase II study. Int J Hyperthermia. 2007; 23 ( 5 ): 451 - 456.
dc.identifier.citedreferenceAktas M, de Jong D, Nuyttens JJ, et al. Concomitant radiotherapy and hyperthermia for primary carcinoma of the vagina: a cohort study. Eur J Obstet Gynecol Reprod Biol. 2007; 133 ( 1 ): 100 - 104.
dc.identifier.citedreferenceWessalowski R, Schneider D, Mils O, et al. An approach for cure: PEI-chemotherapy and regional deep hyperthermia in children and adolescents with unresectable malignant tumors. Klin Pädiatr. 2003; 215 ( 06 ): 303 - 309.
dc.identifier.citedreferenceMaluta S, Kolff MW. Role of hyperthermia in breast cancer locoregional recurrence: a review. Breast Care. 2015; 10 ( 6 ): 408 - 412.
dc.identifier.citedreferencePonce AM, Viglianti BL, Yu D, et al. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst. 2007; 99 ( 1 ): 53 - 63.
dc.identifier.citedreferenceKong G, Anyarambhatla G, Petros WP, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000; 60 ( 24 ): 6950 - 6957.
dc.identifier.citedreferenceLi L, ten Hagen TL, Hossann M, et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release. 2013; 168 ( 2 ): 142 - 150.
dc.identifier.citedreferenceRoemer RB. Engineering aspects of hyperthermia therapy. Annu Rev Biomed Eng. 1999; 1 ( 1 ): 347 - 376.
dc.identifier.citedreferenceGroup ICH, Vernon CC, Hand JW, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996; 35 ( 4 ): 731 - 744.
dc.identifier.citedreferenceOdéen H, Parker DL. Magnetic resonance thermometry and its biological applications–Physical principles and practical considerations. Prog Nucl Magn Reson Spectrosc. 2019; 110: 34 - 61.
dc.identifier.citedreferencePartanen A, Yarmolenko PS, Viitala A, et al. Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia. 2012; 28 ( 4 ): 320 - 336.
dc.identifier.citedreferenceGuillemin PC, Gui L, Lorton O, et al. Mild hyperthermia by MR-guided focused ultrasound in an ex vivo model of osteolytic bone tumour: optimization of the spatio-temporal control of the delivered temperature. J Transl Med. 2019; 17 ( 1 ): 1 - 19.
dc.identifier.citedreferenceZhu L, Partanen A, Talcott MR, et al. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia. 2019; 36 ( 1 ): 1146 - 1158.
dc.identifier.citedreferenceTillander M, Hokland S, Koskela J, et al. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control. Med Phys. 2016; 43 ( 3 ): 1539 - 1549.
dc.identifier.citedreferenceSeip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans Biomed Eng. 1995; 42 ( 8 ): 828 - 839.
dc.identifier.citedreferenceSimon C, VanBaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 1998; 45 ( 4 ): 1088 - 1099.
dc.identifier.citedreferencePratt RG, Huang L, Duric N, Littrup P. Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data. Int Soc Opt Photonics. 2007; 6510: 65104S.
dc.identifier.citedreferenceDel Grosso V, Mader C. Speed of sound in pure water. J Acoust Soc Am. 1972; 52 ( 5B ): 1442 - 1446.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.