Show simple item record

Influence of epigenetics on periodontitis and peri-implantitis pathogenesis

dc.contributor.authorLarsson, Lena
dc.contributor.authorKavanagh, Nolan M.
dc.contributor.authorNguyen, Trang V. N.
dc.contributor.authorCastilho, Rogerio M.
dc.contributor.authorBerglundh, Tord
dc.contributor.authorGiannobile, William V.
dc.date.accessioned2022-10-05T15:54:23Z
dc.date.available2023-11-05 11:54:20en
dc.date.available2022-10-05T15:54:23Z
dc.date.issued2022-10
dc.identifier.citationLarsson, Lena; Kavanagh, Nolan M.; Nguyen, Trang V. N.; Castilho, Rogerio M.; Berglundh, Tord; Giannobile, William V. (2022). "Influence of epigenetics on periodontitis and peri-implantitis pathogenesis." Periodontology 2000 (1): 125-137.
dc.identifier.issn0906-6713
dc.identifier.issn1600-0757
dc.identifier.urihttps://hdl.handle.net/2027.42/174979
dc.description.abstractPeriodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomaterials, dental implants, disease pathogenesis, epigenetics, genetics, periodontal diseases
dc.titleInfluence of epigenetics on periodontitis and peri-implantitis pathogenesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174979/1/prd12453.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174979/2/prd12453_am.pdf
dc.identifier.doi10.1111/prd.12453
dc.identifier.sourcePeriodontology 2000
dc.identifier.citedreferenceShafa M, Krawetz R, Rancourt DE. Returning to the stem state: epigenetics of recapitulating pre-differentiation chromatin structure. BioEssays. 2010; 32 ( 9 ): 791 - 799. doi: 10.1002/bies.201000033
dc.identifier.citedreferenceMiao X, Wang D, Xu L, et al. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. Int J Nanomedicine. 2017; 12: 1415 - 1430. doi: 10.2147/IJN.S126760
dc.identifier.citedreferenceSculean A, Gruber R, Bosshardt DD. Soft tissue wound healing around teeth and dental implants. J Clin Periodontol. 2014; 41 ( Suppl 15 ): S6 - S22. doi: 10.1111/jcpe.12206
dc.identifier.citedreferenceFeller L, Jadwat Y, Khammissa RAG, Meyerov R, Schechter I, Lemmer J. Cellular responses evoked by different surface characteristics of intraosseous titanium implants. Biomed Res Int. 2015; 2015: e171945. doi: 10.1155/2015/171945
dc.identifier.citedreferenceLai M, Jin Z, Su Z. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Mater Sci Eng C. 2017; 73: 490 - 497. doi: 10.1016/j.msec.2016.12.083
dc.identifier.citedreferenceRabineau M, Flick F, Mathieu E, et al. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials. 2015; 37: 144 - 155. doi: 10.1016/j.biomaterials.2014.10.023
dc.identifier.citedreferenceIchioka Y, Derks J, Dahlén G, Berglundh T, Larsson L. Mechanical removal of biofilm on titanium discs: an in vitro study. J Biomed Mater Res B Appl Biomater. 2022; 110 ( 5 ): 1044 - 1055. doi: 10.1002/jbm.b.34978
dc.identifier.citedreferenceBezerra F, Ferreira MR, Fontes GN, et al. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways. Biotechnol Bioeng. 2017; 114 ( 8 ): 1888 - 1898. doi: 10.1002/bit.26310
dc.identifier.citedreferenceLv L, Liu Y, Zhang P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015; 39: 193 - 205. doi: 10.1016/j.biomaterials.2014.11.002
dc.identifier.citedreferenceKulkarni M, Flašker A, Lokar M, et al. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine. 2015; 10: 1359 - 1373. doi: 10.2147/IJN.S77492
dc.identifier.citedreferenceKulkarni M, Junkar I, Humpolíček P, et al. Interaction of nanostructured TiO2 biointerfaces with stem cells and biofilm-forming bacteria. Mater Sci Eng C. 2017; 77: 500 - 507. doi: 10.1016/j.msec.2017.03.174
dc.identifier.citedreferencePalmieri A, Pezzetti F, Brunelli G, et al. Short-period effects of zirconia and titanium on osteoblast MicroRNAs. Clin Implant Dent Relat Res. 2008; 10 ( 3 ): 200 - 205. doi: 10.1111/j.1708-8208.2007.00078.x
dc.identifier.citedreferenceHardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011; 3 ( 4 ): 503 - 518. doi: 10.2217/epi.11.71
dc.identifier.citedreferenceBishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015; 7 ( 2 ): 922 - 947. doi: 10.3390/nu7020922
dc.identifier.citedreferenceFranzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and diet in the prevention of chronic diseases in future generations. Int J Mol Sci. 2020; 21 ( 7 ): 2633. doi: 10.3390/ijms21072633
dc.identifier.citedreferencePhilpott M, Ferguson LR. Immunonutrition and cancer. Mutat Res Genet Toxicol Environ Mutagen. 2004; 551 ( 1 ): 29 - 42. doi: 10.1016/j.mrfmmm.2004.03.005
dc.identifier.citedreferenceJoseph PV, Abey SK, Henderson WA. Emerging role of Nutri-epigenetics in inflammation and cancer. Oncol Nurs Forum. 2016; 43 ( 6 ): 784 - 788. doi: 10.1188/16.ONF.784-788
dc.identifier.citedreferenceLewis KA, Tollefsbol TO. The influence of an epigenetics diet on the cancer epigenome. Epigenomics. 2017; 9 ( 9 ): 1153 - 1155. doi: 10.2217/epi-2017-0077
dc.identifier.citedreferenceThaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2008; 101 ( 5 ): 743 - 749. doi: 10.1017/S0007114508047685
dc.identifier.citedreferenceMeeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010; 1 ( 3 ): 101 - 116. doi: 10.1007/s13148-010-0011-5
dc.identifier.citedreferenceElburki MS, Rossa C, Guimarães-Stabili MR, et al. A chemically modified curcumin (CMC 2.24) inhibits nuclear factor κB activation and inflammatory bone loss in murine models of LPS-induced experimental periodontitis and diabetes-associated natural periodontitis. Inflammation. 2017; 40 ( 4 ): 1436 - 1449. doi: 10.1007/s10753-017-0587-4
dc.identifier.citedreferenceFujii Y, Wakamori M, Umehara T, Yokoyama S. Crystal structure of human nucleosome core particle containing enzymatically introduced CpG methylation. FEBS Open Bio. 2016; 6 ( 6 ): 498 - 514. doi: 10.1002/2211-5463.12064
dc.identifier.citedreferenceHugoson A, Sjödin B, Norderyd O. Trends over 30 years, 1973–2003, in the prevalence and severity of periodontal disease. J Clin Periodontol. 2008; 35 ( 5 ): 405 - 414. doi: 10.1111/j.1600-051X.2008.01225.x
dc.identifier.citedreferenceEke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012; 91 ( 10 ): 914 - 920. doi: 10.1177/0022034512457373
dc.identifier.citedreferenceKassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990-2010: A systematic review and meta-regression. J Dent Res. 2014; 93 ( 11 ): 1045 - 1053. doi: 10.1177/0022034514552491
dc.identifier.citedreferenceKornman KS. Mapping the pathogenesis of periodontitis: A new look. J Periodontol. 2008; 79 ( 8S ): 1560 - 1568. doi: 10.1902/jop.2008.080213
dc.identifier.citedreferenceCarcuac O, Berglundh T. Composition of human peri-implantitis and periodontitis lesions. J Dent Res. 2014; 93 ( 11 ): 1083 - 1088. doi: 10.1177/0022034514551754
dc.identifier.citedreferenceSalvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res. 2017; 96 ( 1 ): 31 - 37. doi: 10.1177/0022034516667484
dc.identifier.citedreferenceRobitaille N, Reed DN, Walters JD, Kumar PS. Periodontal and peri-implant diseases: identical or fraternal infections? Mol Oral Microbiol. 2016; 31 ( 4 ): 285 - 301. doi: 10.1111/omi.12124
dc.identifier.citedreferenceOffenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol. 2008; 79 ( 8S ): 1577 - 1584. doi: 10.1902/jop.2008.080220
dc.identifier.citedreferenceLarsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases: A state-of-the-art review. J Periodontol. 2015; 86 ( 4 ): 556 - 568. doi: 10.1902/jop.2014.140559
dc.identifier.citedreferenceGiannobile WV. Commentary: treatment of periodontitis: destroyed periodontal tissues can be regenerated under certain conditions. J Periodontol. 2014; 85 ( 9 ): 1151 - 1154. doi: 10.1902/jop.2014.140254
dc.identifier.citedreferenceBerglundh T, Zitzmann NU, Donati M. Are peri-implantitis lesions different from periodontitis lesions? J Clin Periodontol. 2011; 38 ( s11 ): 188 - 202. doi: 10.1111/j.1600-051X.2010.01672.x
dc.identifier.citedreferenceCarcuac O, Abrahamsson I, Albouy JP, Linder E, Larsson L, Berglundh T. Experimental periodontitis and peri-implantitis in dogs. Clin Oral Implants Res. 2013; 24 ( 4 ): 363 - 371. doi: 10.1111/clr.12067
dc.identifier.citedreferenceTakamori Y, Atsuta I, Nakamura H, Sawase T, Koyano K, Hara Y. Histopathological comparison of the onset of peri-implantitis and periodontitis in rats. Clin Oral Implants Res. 2017; 28 ( 2 ): 163 - 170. doi: 10.1111/clr.12777
dc.identifier.citedreferenceGürlek Ö, Gümüş P, Nile CJ, Lappin DF, Buduneli N. Biomarkers and bacteria around implants and natural teeth in the same individuals. J Periodontol. 2017; 88 ( 8 ): 752 - 761. doi: 10.1902/jop.2017.160751
dc.identifier.citedreferenceTzach-Nahman R, Mizraji G, Shapira L, Nussbaum G, Wilensky A. Oral infection with Porphyromonas gingivalis induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response. J Clin Periodontol. 2017; 44 ( 7 ): 739 - 748. doi: 10.1111/jcpe.12735
dc.identifier.citedreferenceZhang Y, Li Y, Yang Y, et al. Periodontal and peri-implant microbiome dysbiosis is associated with alterations in the microbial community structure and local stability. Front Microbiol. 2022; 12: 785191. doi: 10.3389/fmicb.2021.785191
dc.identifier.citedreferenceAsa’ad F, Garaicoa-Pazmiño C, Dahlin C, Larsson L. Expression of MicroRNAs in periodontal and peri-implant diseases: A systematic review and meta-analysis. Int J Mol Sci. 2020; 21 ( 11 ): 4147. doi: 10.3390/ijms21114147
dc.identifier.citedreferenceAsa’ad F, Monje A, Larsson L. Role of epigenetics in alveolar bone resorption and regeneration around periodontal and peri-implant tissues. Eur J Oral Sci. 2019; 127 ( 6 ): 477 - 493. doi: 10.1111/eos.12657
dc.identifier.citedreferenceJenuwein T, Allis CD. Translating the histone code. Science. 2001; 293 ( 5532 ): 1074 - 1080. doi: 10.1126/science.1063127
dc.identifier.citedreferenceBird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16 ( 1 ): 6 - 21. doi: 10.1101/gad.947102
dc.identifier.citedreferenceRoth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001; 70 ( 1 ): 81 - 120. doi: 10.1146/annurev.biochem.70.1.81
dc.identifier.citedreferenceThiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003; 983 ( 1 ): 84 - 100. doi: 10.1111/j.1749-6632.2003.tb05964.x
dc.identifier.citedreferenceDiomede F, Thangavelu SR, Merciaro I, et al. Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. Eur J Histochem. 2017; 61 ( 3 ): 2826. doi: 10.4081/ejh.2017.2826
dc.identifier.citedreferenceMartins MD, Castilho RM. Histones: controlling tumor signaling circuitry. J Carcinog Mutagen. 2013; 1 ( Suppl 5 ): 1 - 12. doi: 10.4172/2157-2518.S5-001
dc.identifier.citedreferenceBrownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev. 1996; 6 ( 2 ): 176 - 184. doi: 10.1016/S0959-437X(96)80048-7
dc.identifier.citedreferenceRobertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000; 1 ( 1 ): 11 - 19. doi: 10.1038/35049533
dc.identifier.citedreferenceTahiliani M, Koh KP, Shen Y, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324 ( 5929 ): 930 - 935. doi: 10.1126/science.1170116
dc.identifier.citedreferenceKraus TFJ, Globisch D, Wagner M, et al. Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base,” are associated with anaplasia in human brain tumors. Int J Cancer. 2012; 131 ( 7 ): 1577 - 1590. doi: 10.1002/ijc.27429
dc.identifier.citedreferenceIchioka Y, Asa’ad F, Malekzadeh BÖ, Westerlund A, Larsson L. Epigenetic changes of osteoblasts in response to titanium surface characteristics. J Biomed Mater Res A. 2021; 109 ( 2 ): 170 - 180. doi: 10.1002/jbm.a.37014
dc.identifier.citedreferenceLarsson L, Pilipchuk SP, Giannobile WV, Castilho RM. When epigenetics meets bioengineering—A material characteristics and surface topography perspective. J Biomed Mater Res B Appl Biomater. 2018; 106 ( 5 ): 2065 - 2071. doi: 10.1002/jbm.b.33953
dc.identifier.citedreferenceBarros SP, Offenbacher S. Modifiable risk factors in periodontal disease. Periodontol. 2014; 64 ( 1 ): 95 - 110. doi: 10.1111/prd.12000
dc.identifier.citedreferenceKhouly I, Braun RS, Ordway M, et al. The role of DNA methylation and histone modification in periodontal disease: A systematic review. Int J Mol Sci. 2020; 21 ( 17 ): 6217. doi: 10.3390/ijms21176217
dc.identifier.citedreferenceLod S, Johansson T, Abrahamsson K, Larsson L. The influence of epigenetics in relation to oral health. Int J Dent Hyg. 2014; 12 ( 1 ): 48 - 54. doi: 10.1111/idh.12030
dc.identifier.citedreferenceLuo Y, Peng X, Duan D, Liu C, Xu X, Zhou X. Epigenetic regulations in the pathogenesis of periodontitis. Curr Stem Cell Res Ther. 2018; 13 ( 2 ): 144 - 150. doi: 10.2174/1574888X12666170718161740
dc.identifier.citedreferenceSeo JY, Park YJ, Yi YA, et al. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod. 2014; 40 ( 1 ): 14 - 22. doi: 10.5395/rde.2015.40.1.14
dc.identifier.citedreferenceMartins MD, Jiao Y, Larsson L, et al. Epigenetic modifications of histones in periodontal disease. J Dent Res. 2016; 95 ( 2 ): 215 - 222. doi: 10.1177/0022034515611876
dc.identifier.citedreferenceYin L, Chung WO. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011; 4 ( 4 ): 409 - 419. doi: 10.1038/mi.2010.83
dc.identifier.citedreferenceBenakanakere M, Abdolhosseini M, Hosur K, Finoti LS, Kinane DF. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015; 94 ( 1 ): 183 - 191. doi: 10.1177/0022034514557545
dc.identifier.citedreferenceBordagaray MJ, Fernández A, Astorga J, et al. CpG single-site methylation regulates TLR2 expression in proinflammatory PBMCs from apical periodontitis individuals. Front Immunol. 2022; 13: 861665. doi: 10.3389/fimmu.2022.861665
dc.identifier.citedreferenceDe Oliveira NFP, Andia DC, Planello AC, et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol. 2011; 38 ( 11 ): 975 - 983. doi: 10.1111/j.1600-051X.2011.01765.x
dc.identifier.citedreferencede Faria Amormino SA, Arão TC, Saraiva AM, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum Immunol. 2013; 74 ( 9 ): 1231 - 1236. doi: 10.1016/j.humimm.2013.04.037
dc.identifier.citedreferenceShaddox LM, Mullersman AF, Huang H, Wallet SM, Langaee T, Aukhil I. Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics. 2017; 9 ( 1 ): 94. doi: 10.1186/s13148-017-0385-8
dc.identifier.citedreferenceMiao D, Godovikova V, Qian X, Seshadrinathan S, Kapila YL, Fenno JC. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol. 2014; 59 ( 10 ): 1056 - 1064. doi: 10.1016/j.archoralbio.2014.06.003
dc.identifier.citedreferenceFranco C, Patricia HR, Timo S, Claudia B, Marcela H. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci. 2017; 18 ( 2 ): 440. doi: 10.3390/ijms18020440
dc.identifier.citedreferenceDe Souza AP, Planello AC, Marques MR, De Carvalho DD, Line SRP. High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis. Clin Epigenetics. 2014; 6 ( 1 ): 15. doi: 10.1186/1868-7083-6-15
dc.identifier.citedreferenceSchulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol. 2016; 77 ( 1 ): 71 - 75. doi: 10.1016/j.humimm.2015.10.007
dc.identifier.citedreferenceKobayashi T, Ishida K, Yoshie H. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis. Arch Oral Biol. 2016; 69: 89 - 94. doi: 10.1016/j.archoralbio.2016.05.018
dc.identifier.citedreferenceStefani FA, Viana MB, Dupim AC, et al. Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues. Immunobiology. 2013; 218 ( 7 ): 1012 - 1017. doi: 10.1016/j.imbio.2012.12.001
dc.identifier.citedreferenceIshida K, Kobayashi T, Ito S, et al. Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J Periodontol. 2012; 83 ( 7 ): 917 - 925. doi: 10.1902/jop.2011.110356
dc.identifier.citedreferenceKojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, Yoshie H. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res. 2016; 51 ( 3 ): 350 - 358. doi: 10.1111/jre.12314
dc.identifier.citedreferenceZhang S, Barros SP, Moretti AJ, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol. 2013; 84 ( 11 ): 1606 - 1616. doi: 10.1902/jop.2013.120294
dc.identifier.citedreferenceBaptista NB, Portinho D, Casarin RCV, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol. 2014; 59 ( 7 ): 670 - 678. doi: 10.1016/j.archoralbio.2014.03.015
dc.identifier.citedreferencePlanello AC, Singhania R, Kron KJ, et al. Pre-neoplastic epigenetic disruption of transcriptional enhancers in chronic inflammation. Oncotarget. 2016; 7 ( 13 ): 15772 - 15786. doi: 10.18632/oncotarget.7513
dc.identifier.citedreferenceAndia DC, Planello AC, Portinho D, et al. DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue. Clin Oral Investig. 2015; 19 ( 9 ): 2337 - 2344. doi: 10.1007/s00784-015-1460-1
dc.identifier.citedreferenceAsa’ad F, Bollati V, Pagni G, et al. Evaluation of DNA methylation of inflammatory genes following treatment of chronic periodontitis: A pilot case–control study. J Clin Periodontol. 2017; 44 ( 9 ): 905 - 914. doi: 10.1111/jcpe.12783
dc.identifier.citedreferenceCho YD, Kim PJ, Kim HG, et al. Transcriptomics and methylomics in chronic periodontitis with tobacco use: a pilot study. Clin Epigenetics. 2017; 9 ( 1 ): 81. doi: 10.1186/s13148-017-0381-z
dc.identifier.citedreferenceLarsson L, Thorbert-Mros S, Lopez-Lago A, Kalm J, Shikhan A, Berglundh T. Expression of TET2 enzyme indicates enhanced epigenetic modification of cells in periodontitis. Eur J Oral Sci. 2016; 124 ( 4 ): 329 - 333. doi: 10.1111/eos.12281
dc.identifier.citedreferenceHuang Y, Tian C, Li Q, Xu Q. TET1 knockdown inhibits Porphyromonas gingivalis LPS/IFN-γ-induced M1 macrophage polarization through the NF-κB pathway in THP-1 cells. Int J Mol Sci. 2019; 20 ( 8 ): 2023. doi: 10.3390/ijms20082023
dc.identifier.citedreferenceJiang Y, Fu J, Du J, et al. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis. 2022; 28 ( 2 ): 249 - 263. doi: 10.1111/odi.13654
dc.identifier.citedreferencede Camargo PG, Guimarães GN, Planello AC, et al. Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. Clin Oral Investig. 2013; 17 ( 4 ): 1279 - 1285. doi: 10.1007/s00784-012-0816-z
dc.identifier.citedreferenceXuan D, Han Q, Tu Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 Axis in macrophages. J Cell Physiol. 2016; 231 ( 5 ): 1090 - 1096. doi: 10.1002/jcp.25201
dc.identifier.citedreferenceBreivik T, Gundersen Y, Murison R, et al. Maternal deprivation of Lewis rat pups increases the severity of Experi-mental periodontitis in adulthood. Open Dent J. 2015; 9: 65 - 78. doi: 10.2174/1874210601509010065
dc.identifier.citedreferenceDi Gianfilippo R, Di Gianfilippo C, Prato GPP. The role of epigenetics on dental implant therapy: A systematic review. Epigenomes. 2017; 1 ( 2 ): 12. doi: 10.3390/epigenomes1020012
dc.identifier.citedreferenceKhouly I, Pardiñas López S, Díaz Prado SM, et al. Global DNA methylation in dental implant failure due to peri-Implantitis: an exploratory clinical pilot study. Int J Environ Res Public Health. 2022; 19 ( 2 ): 1020. doi: 10.3390/ijerph19021020
dc.identifier.citedreferenceFretwurst T, Buzanich G, Nahles S, Woelber JP, Riesemeier H, Nelson K. Metal elements in tissue with dental peri-implantitis: a pilot study. Clin Oral Implants Res. 2016; 27 ( 9 ): 1178 - 1186. doi: 10.1111/clr.12718
dc.identifier.citedreferenceNoronha Oliveira M, Schunemann WVH, Mathew MT, et al. Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res. 2018; 53 ( 1 ): 1 - 11. doi: 10.1111/jre.12479
dc.identifier.citedreferenceWachi T, Shuto T, Shinohara Y, Matono Y, Makihira S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology. 2015; 327: 1 - 9. doi: 10.1016/j.tox.2014.10.016
dc.identifier.citedreferenceDaubert DM, Pozhitkov AE, Safioti LM, Kotsakis GA. Association of Global DNA methylation to titanium and peri-Implantitis: A case-control study. JDR Clin Transl Res. 2019; 4 ( 3 ): 284 - 291. doi: 10.1177/2380084418822831
dc.identifier.citedreferencePettersson M, Kelk P, Belibasakis GN, Bylund D, Molin Thorén M, Johansson A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res. 2017; 52 ( 1 ): 21 - 32. doi: 10.1111/jre.12364
dc.identifier.citedreferenceJacobs KM, Misri S, Meyer B, et al. Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. MBoC. 2016; 27 ( 8 ): 1332 - 1345. doi: 10.1091/mbc.E16-01-0017
dc.identifier.citedreferenceSetyawati MI, Khoo PKS, Eng BH, et al. Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts. J Biomed Mater Res A. 2013; 101A ( 3 ): 633 - 640. doi: 10.1002/jbm.a.34363
dc.identifier.citedreferenceToyooka T, Amano T, Ibuki Y. Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. Mutat Res Genet Toxicol Environ Mutagen. 2012; 742 ( 1 ): 84 - 91. doi: 10.1016/j.mrgentox.2011.12.015
dc.identifier.citedreferenceSuárez-López del Amo F, Rudek I, Wagner VP, et al. Titanium activates the DNA damage response pathway in Oral epithelial cells: A pilot study. Int J Oral Maxillofac Implants. 2017; 32 ( 6 ): 1413 - 1420. doi: 10.11607/jomi.6077
dc.identifier.citedreferenceDeng CX, Wang RH. Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet. 2003; 12 ( suppl_1 ): R113 - R123. doi: 10.1093/hmg/ddg082
dc.identifier.citedreferenceKrum SA, Dalugdugan ER, Miranda-Carboni GA, Lane TF. BRCA1 forms a functional complex with -H2AX as a late response to genotoxic stress. J Nucleic Acids. 2010; 2010: e801594. doi: 10.4061/2010/801594
dc.identifier.citedreferencePaull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000; 10 ( 15 ): 886 - 895. doi: 10.1016/S0960-9822(00)00610-2
dc.identifier.citedreferenceIrshad M, Scheres N, Crielaard W, Loos BG, Wismeijer D, Laine ML. Influence of titanium on in vitro fibroblast–Porphyromonas gingivalis interaction in peri-implantitis. J Clin Periodontol. 2013; 40 ( 9 ): 841 - 849. doi: 10.1111/jcpe.12136
dc.identifier.citedreferenceHuynh NCN, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone. 2017; 95: 76 - 84. doi: 10.1016/j.bone.2016.11.017
dc.identifier.citedreferenceKim HN, Lee JH, Bae SC, et al. Histone deacetylase inhibitor MS-275 stimulates bone formation in part by enhancing Dhx36-mediated TNAP transcription. J Bone Miner Res. 2011; 26 ( 9 ): 2161 - 2173. doi: 10.1002/jbmr.426
dc.identifier.citedreferenceKim TI, Han JE, Jung HM, Oh JH, Woo KM. Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett. 2013; 35 ( 1 ): 129 - 133. doi: 10.1007/s10529-012-0992-6
dc.identifier.citedreferenceCantley MD, Bartold PM, Fairlie DP, Rainsford KD, Haynes DR. Histone deacetylase inhibitors as suppressors of bone destruction in inflammatory diseases. J Pharm Pharmacol. 2012; 64 ( 6 ): 763 - 774. doi: 10.1111/j.2042-7158.2011.01421.x
dc.identifier.citedreferenceCantley MD, Fairlie DP, Bartold PM, et al. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol. 2011; 226 ( 12 ): 3233 - 3241. doi: 10.1002/jcp.22684
dc.identifier.citedreferenceCantley MD, Bartold PM, Marino V, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res. 2011; 46 ( 6 ): 697 - 703. doi: 10.1111/j.1600-0765.2011.01392.x
dc.identifier.citedreferenceCantley MD, Dharmapatni AA, Algate K, Crotti TN, Bartold PM, Haynes DR. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue. J Periodontal Res. 2016; 51 ( 2 ): 143 - 151. doi: 10.1111/jre.12290
dc.identifier.citedreferenceHuynh NCN, Everts V, Pavasant P, Ampornaramveth RS. Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem. 2016; 117 ( 6 ): 1384 - 1395. doi: 10.1002/jcb.25429
dc.identifier.citedreferenceSufaru IG, Beikircher G, Weinhaeusel A, Gruber R. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci. 2017; 47 ( 2 ): 66 - 76. doi: 10.5051/jpis.2017.47.2.66
dc.identifier.citedreferenceEl-Serafi AT, Oreffo ROC, Roach HI. Epigenetic modifiers influence lineage commitment of human bone marrow stromal cells: differential effects of 5-aza-deoxycytidine and trichostatin A. Differentiation. 2011; 81 ( 1 ): 35 - 41. doi: 10.1016/j.diff.2010.09.183
dc.identifier.citedreferenceCho YD, Kim WJ, Kim S, Ku Y, Ryoo HM. Surface topography of titanium affects their osteogenic potential through DNA methylation. Int J Mol Sci. 2021; 22 ( 5 ): 2406. doi: 10.3390/ijms22052406
dc.identifier.citedreferenceTanaka U, Kajioka S, Finoti LS, Palioto DB, Kinane DF, Benakanakere MR. Decitabine inhibits bone resorption in periodontitis by upregulating anti-inflammatory cytokines and suppressing Osteoclastogenesis. Biomedicine. 2021; 9 ( 2 ): 199. doi: 10.3390/biomedicines9020199
dc.identifier.citedreferenceMeng S, Zhang L, Tang Y, et al. BET inhibitor JQ1 blocks inflammation and bone destruction. J Dent Res. 2014; 93 ( 7 ): 657 - 662. doi: 10.1177/0022034514534261
dc.identifier.citedreferenceCantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017; 95: 162 - 174. doi: 10.1016/j.bone.2016.11.028
dc.identifier.citedreferenceLarsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. Regenerative medicine for periodontal and peri-implant diseases. J Dent Res. 2016; 95 ( 3 ): 255 - 266. doi: 10.1177/0022034515618887
dc.identifier.citedreferencePaino F, Noce M, Tirino V, et al. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells. 2014; 32 ( 1 ): 279 - 289. doi: 10.1002/stem.1544
dc.identifier.citedreferenceGarcia-Gomez A, Li T, Kerick M, et al. TET2- and TDG-mediated changes are required for the acquisition of distinct histone modifications in divergent terminal differentiation of myeloid cells. Nucleic Acids Res. 2017; 45 ( 17 ): 10002 - 10017. doi: 10.1093/nar/gkx666
dc.identifier.citedreferenceSepulveda H, Villagra A, Montecino M. Tet-mediated DNA demethylation is required for SWI/SNF-dependent chromatin remodeling and histone-modifying activities that trigger expression of the Sp7 osteoblast master gene during mesenchymal lineage commitment. Mol Cell Biol. 37 ( 20 ): e00177-17. doi: 10.1128/MCB.00177-17
dc.identifier.citedreferenceUehara O, Abiko Y, Saitoh M, Miyakawa H, Nakazawa F. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. J Microbiol Immunol Infect. 2014; 47 ( 3 ): 176 - 181. doi: 10.1016/j.jmii.2012.08.005
dc.identifier.citedreferenceCho Y, Kim B, Bae H, et al. Direct gingival fibroblast/osteoblast Transdifferentiation via epigenetics. J Dent Res. 2017; 96 ( 5 ): 555 - 561. doi: 10.1177/0022034516686745
dc.identifier.citedreferenceLi B, Sun J, Dong Z, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 2016; 6 ( 1 ): 26542. doi: 10.1038/srep26542
dc.identifier.citedreferenceLi Q, Liu F, Dang R, et al. Epigenetic modifier trichostatin A enhanced osteogenic differentiation of mesenchymal stem cells by inhibiting NF-κB (p65) DNA binding and promoted periodontal repair in rats. J Cell Physiol. 2020; 235 ( 12 ): 9691 - 9701. doi: 10.1002/jcp.29780
dc.identifier.citedreferenceHillemacher T, Frieling H, Moskau S, et al. Global DNA methylation is influenced by smoking behaviour. Eur Neuropsychopharmacol. 2008; 18 ( 4 ): 295 - 298. doi: 10.1016/j.euroneuro.2007.12.005
dc.identifier.citedreferenceMiao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions *. J Biol Chem. 2004; 279 ( 17 ): 18091 - 18097. doi: 10.1074/jbc.M311786200
dc.identifier.citedreferenceLee SU, Kwak HB, Pi SH, et al. In vitro and in vivo osteogenic activity of Largazole. ACS Med Chem Lett. 2011; 2 ( 3 ): 248 - 251. doi: 10.1021/ml1002794
dc.identifier.citedreferenceWang Z, Wu G, Feng Z, et al. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells. Int J Nanomedicine. 2015; 10: 6675 - 6687. doi: 10.2147/IJN.S94689
dc.identifier.citedreferenceWu K, Song W, Zhao L, et al. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity. ACS Appl Mater Interfaces. 2013; 5 ( 7 ): 2733 - 2744. doi: 10.1021/am400374c
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.