Show simple item record

The Total Synthesis of Glycolipids from Streptococcus pneumoniae and a Re-evaluation of Their Immunological Activity**

dc.contributor.authorSadraei, Seyed Iraj
dc.contributor.authorYousif, Greg
dc.contributor.authorTaimoory, S. Maryamdokht
dc.contributor.authorKosar, Maryam
dc.contributor.authorMehri, Samaneh
dc.contributor.authorAlolabi, Raghd
dc.contributor.authorIgbokwe, Emmanuel
dc.contributor.authorToma, Jason
dc.contributor.authorRahim, Mir Munir A.
dc.contributor.authorTrant, John F.
dc.date.accessioned2022-10-05T15:54:27Z
dc.date.available2023-10-05 11:54:24en
dc.date.available2022-10-05T15:54:27Z
dc.date.issued2022-09-16
dc.identifier.citationSadraei, Seyed Iraj; Yousif, Greg; Taimoory, S. Maryamdokht; Kosar, Maryam; Mehri, Samaneh; Alolabi, Raghd; Igbokwe, Emmanuel; Toma, Jason; Rahim, Mir Munir A.; Trant, John F. (2022). "The Total Synthesis of Glycolipids from Streptococcus pneumoniae and a Re-evaluation of Their Immunological Activity**." ChemBioChem 23(18): n/a-n/a.
dc.identifier.issn1439-4227
dc.identifier.issn1439-7633
dc.identifier.urihttps://hdl.handle.net/2027.42/174980
dc.description.abstractInvariant natural killer (iNK) T cells, Type I iNKTs, are responsible for the production of pro-inflammatory cytokines which induce a systemic immune response. They are distinctive in possessing an semi-invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a protein closely related to the class I major histocompatibility complex, conserved across multiple mammalian species in a class of proteins well-renowned for their high degree of polymorphism. This receptor’s first potent identified antigen is the α-galactosylceramide, KRN7000, a synthetic glycosphingolipid closely related to those isolated from bacteria that were found on a Japanese marine sponge. A corresponding terrestrial antigen remained unidentified until two specific diacylglycerol-containing glycolipids, reported to activate iNKT cells, were isolated from Streptococcus pneumoniae. We report the total synthesis and immunological re-evaluation of these two glycolipids. The compounds are unable to meaningfully activate iNKT cells. Computational modelling shows that these ligands, while being capable of interacting with the CD1d receptor, create a different surface for the binary complex that makes formation of the ternary complex with the iNKT T-cell receptor difficult. Together these results suggest that the reported activity might have been due to an impurity in the original isolated sample and highlights the importance of taking care when reporting biological activity from isolated natural products.The synthetic KRN7000 derived from sponge-dwelling bacteria metabolites, activates the invariant natural killer T-cells. Two glycolipids were reported isolated from Streptococcus pneumoniae in 2011 with reported potent activity. This resynthesis of both shows they are inactive against this receptor, and computational data proposes that this is expected as they present differently on the iNKT receptor.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.othercarbohydrate synthesis
dc.subject.otherglycolipids
dc.subject.otherinvariant natural killer T cells
dc.subject.otherKRN7000
dc.subject.otherS. pneumoniae
dc.titleThe Total Synthesis of Glycolipids from Streptococcus pneumoniae and a Re-evaluation of Their Immunological Activity**
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174980/1/cbic202200361.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174980/2/cbic202200361_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174980/3/cbic202200361-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cbic.202200361
dc.identifier.sourceChemBioChem
dc.identifier.citedreferenceJ. F. Trant, N. Jain, D. Mazzuca, J. McIntosh, B. Fan, S. M. M. Haeryfar, S. Lecommandoux, E. R. Gillies, Nanoscale 2016, 8, 17694 – 17704.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. L. Hayworth, D. M. Mazzuca, S. M. Vareki, I. Welch, J. K. McCormick, S. M. M. Haeryfar, Immunol. Cell Biol. 2012, 90, 699 – 709;
dc.identifier.citedreferenceP. A. Szabo, R. V. Anantha, C. R. Shaler, J. K. McCormick, S. M. M. Haeryfar, Front. Immunol. 2015, 6, 401 – 401;
dc.identifier.citedreferenceM. B. Richardson, D. G. M. Smith, S. J. Williams, Chem. Commun. 2017, 53, 1100 – 1103.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Mattner, K. L. DeBord, N. Ismail, R. D. Goff, C. Cantu, D. Zhou, P. Saint-Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe, O. Schneewind, D. Walker, B. Beutler, L. Teyton, P. B. Savage, A. Bendelac, Nature 2005, 434, 525 – 529;
dc.identifier.citedreferenceE. Tupin, Y. Kinjo, M. Kronenberg, Nat. Rev. Microbiol. 2007, 5, 405.
dc.identifier.citedreferenceS. I. Sadraei, M. Reynolds, J. F. Trant, Adv. Carbohydr. Chem. Biochem. 2017, 74, 137 – 237.
dc.identifier.citedreferenceB. A. Wolucka, M. R. McNeil, L. Kalbe, C. Cocito, P. J. Brennan, Biochim. Biophys. Acta Lipids Lipid Metab. 1993, 1170, 131 – 136.
dc.identifier.citedreferenceA. P. Uldrich, O. Patel, G. Cameron, D. G. Pellicci, E. B. Day, L. C. Sullivan, K. Kyparissoudis, L. Kjer-Nielsen, J. P. Vivian, B. Cao, A. G. Brooks, S. J. Williams, P. Illarionov, G. S. Besra, S. J. Turner, S. A. Porcelli, J. McCluskey, M. J. Smyth, J. Rossjohn, D. I. Godfrey, Nat. Immunol. 2011, 12, 616 – 623.
dc.identifier.citedreferenceD. Szamosvári, M. Bae, S. Bang, B. K. Tusi, C. D. Cassilly, S.-M. Park, D. B. Graham, R. J. Xavier, J. Clardy, J. Am. Chem. Soc. 2022, 144, 2474 – 2478.
dc.identifier.citedreferenceM. Koch, V. S. Stronge, D. Shepherd, S. D. Gadola, B. Mathew, G. Ritter, A. R. Fersht, G. S. Besra, R. R. Schmidt, E. Y. Jones, V. Cerundolo, Nat. Immunol. 2005, 6, 819 – 826.
dc.identifier.citedreferenceE. Hénon, M. Dauchez, A. Haudrechy, A. Banchet, Tetrahedron 2008, 64, 9480 – 9489.
dc.identifier.citedreferenceN. A. Borg, K. S. Wun, L. Kjer-Nielsen, M. C. J. Wilce, D. G. Pellicci, R. Koh, G. S. Besra, M. Bharadwaj, D. I. Godfrey, J. McCluskey, J. Rossjohn, Nature 2007, 448, 44 – 49.
dc.identifier.citedreferenceM. Wernerova, T. Hudlicky, Synlett 2010, 2701 – 2707.
dc.identifier.citedreferenceD. M. Zajonc, C. Cantu, J. Mattner, D. Zhou, P. B. Savage, A. Bendelac, I. A. Wilson, L. Teyton, Nat. Immunol. 2005, 6, 810 – 818.
dc.identifier.citedreferenceC. Rapp, C. Kalyanaraman, A. Schiffmiller, E. L. Schoenbrun, M. P. Jacobson, J. Chem. Inform. Model. 2011, 51, 2082 – 2089.
dc.identifier.citedreferenceS. Sirin, R. Kumar, C. Martinez, M. J. Karmilowicz, P. Ghosh, Y. A. Abramov, V. Martin, W. Sherman, J. Chem. Inform. Model. 2014, 54, 2334 – 2346.
dc.identifier.citedreference 
dc.identifier.citedreferenceIn Prime, version 2021–2, Schrödinger, New York, 2020;
dc.identifier.citedreferenceJ. L. Knight, G. Krilov, K. W. Borrelli, J. Williams, J. R. Gunn, A. Clowes, L. Cheng, R. A. Friesner, R. Abel, J. Chem. Theory Comput. 2014, 10, 3207 – 3220.
dc.identifier.citedreferenceS. Shah, M. Nagata, S. Yamasaki, S. J. Williams, Chem. Commun. 2016, 52, 10902 – 10905.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Haifeng, Y. Yanghua, Y. Xinsheng, Acad. J. Second Mil. Med. Univ. 2002, 23, 246 – 249;
dc.identifier.citedreferenceH. Tang, Y. Yi, X. Yao, S. Zhang, Z. Xu, S. Mao, Chin. J. Mar 2003, 22, 8 – 12.
dc.identifier.citedreferenceV. Srikanth, R. Prasad, Y. Poornachandra, V. P. Babu, C. G. Kumar, B. Jagadeesh, R. C. R. Jala, Eur. J. Med. Chem. 2016, 109, 134 – 145.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. L. C. Isaad, P. Carrara, P. Stano, K. S. Krishnakumar, D. Lafont, A. Zamboulis, R. Buchet, D. Bouchu, F. Albrieux, P. Strazewski, Org. Biomol. Chem. 2014, 12, 6363 – 6373;
dc.identifier.citedreferenceA. Khan, F. Hollwedel, U. A. Maus, B. L. Stocker, M. S. M. Timmer, Carbohydr. Res. 2020, 489, 107951.
dc.identifier.citedreferenceE. Manzo, L. Fioretto, D. Pagano, G. Nuzzo, C. Gallo, R. De Palma, A. Fontana, Mar. Drugs 2017, 15, 288.
dc.identifier.citedreferenceS. Loya, V. Reshef, E. Mizrachi, C. Silberstein, Y. Rachamim, S. Carmeli, A. Hizi, J. Nat. Prod. 1998, 61, 891 – 895.
dc.identifier.citedreferenceM. Shimamura, H. Hidaka, Curr. Med. Chem. 2012, 19, 4869 – 4874.
dc.identifier.citedreferenceL. Tao, T. A. Reese, Tr. Immunol. 2017, 38, 181 – 193.
dc.identifier.citedreferenceD. I. Godfrey, A. P. Uldrich, J. McCluskey, J. Rossjohn, D. B. Moody, Nat. Immunol. 2015, 16, 1114 – 1123.
dc.identifier.citedreferenceM. Salio, J. D. Silk, E. Yvonne Jones, V. Cerundolo, Ann. Rev. Immunol. 2014, 32, 323 – 366.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. J. Brennan, M. Brigl, M. B. Brenner, Nat. Rev. Immunol. 2013, 13, 101 – 117;
dc.identifier.citedreferenceT. Tashiro, K. Mori, in Glycosphingolipid Ligands for Invariant Natural Killer T cells as Immunostimulants, Vol. 42 Elsevier, 2014, pp.  1 – 31.
dc.identifier.citedreferenceT. Natori, M. Morita, K. Akimoto, Y. Koezuka, Tetrahedron 1994, 50, 2771 – 2784.
dc.identifier.citedreferenceA. M. Birkholz, M. Kronenberg, Biomed. J. 2015, 38, 470 – 483.
dc.identifier.citedreferenceA. Banchet-Cadeddu, E. Henon, M. Dauchez, J.-H. Renault, F. Monneaux, A. Haudrechy, Org. Biomol. Chem. 2011, 9, 3080 – 3104.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Novak, A. Lehuen, Cytokine 2011, 53, 263 – 270;
dc.identifier.citedreferenceC. M. Crosby, M. Kronenberg, Immunogenetics 2016, 68, 639 – 648;
dc.identifier.citedreferenceE. E. Nieuwenhuis, T. Matsumoto, M. Exley, R. A. Schleipman, J. Glickman, D. T. Bailey, N. Corazza, S. P. Colgan, A. B. Onderdonk, R. S. Blumberg, Nat. Med. 2002, 8, 588 – 593.
dc.identifier.citedreferenceY. Kinjo, P. Illarionov, J. L. Vela, B. Pei, E. Girardi, X. Li, Y. Li, M. Imamura, Y. Kaneko, A. Okawara, Y. Miyazaki, A. Gomez-Velasco, P. Rogers, S. Dahesh, S. Uchiyama, A. Khurana, K. Kawahara, H. Yesilkaya, P. W. Andrew, C.-H. Wong, K. Kawakami, V. Nizet, G. S. Besra, M. Tsuji, D. M. Zajonc, M. Kronenberg, Nat. Immunol. 2011, 12, 966 – 974.
dc.identifier.citedreferenceR. Cherazard, M. Epstein, T.-L. Doan, T. Salim, S. Bharti, M. A. Smith, Am. J. Ther. 2017, 24, e361 – e369.
dc.identifier.citedreferenceB. M. Gray, D. M. Musher, in The History of Pneumococcal Disease, American Society of Microbiology, 2008.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Ratledge, in Microbial Production of Vitamin F and Other Polyunsaturated Fatty Acids, Wiley-VCH, Weinheim, 2016, pp.  287 – 320;
dc.identifier.citedreferenceA. Shibahara, K. Yamamoto, M. Takeoka, A. Kinoshita, G. Kajimoto, T. Nakayama, M. Noda, FEBS Lett. 1990, 268, 306 – 306;
dc.identifier.citedreferenceA. Shibahara, K. Yamamoto, M. Takeoka, A. Kinoshita, G. Kajimoto, T. Nakayama, M. Noda, FEBS Lett. 1990, 264, 228 – 230.
dc.identifier.citedreferenceC. J. Field, H. H. Blewett, S. Proctor, D. Vine, Appl. Physiol. Nutr. Metab. 2009, 34, 979 – 991.
dc.identifier.citedreferenceS. Burugupalli, C. F. Almeida, D. G. M. Smith, S. Shah, O. Patel, J. Rossjohn, A. P. Uldrich, D. I. Godfrey, S. J. Williams, Chem. Sci. 2020, 11, 2161 – 2168;
dc.identifier.citedreferenceC. F. Almeida, S. Sundararaj, J. Le Nours, T. Praveena, B. Cao, S. Burugupalli, D. G. M. Smith, O. Patel, M. Brigl, D. G. Pellicci, S. J. Williams, A. P. Uldrich, D. I. Godfrey, J. Rossjohn, Nat. Commun. 2019, 10, 5242.
dc.identifier.citedreferenceT. Imai, T. Matsumura, S. Mayer-Lambertz, C. A. Wells, E. Ishikawa, S. K. Butcher, T. C. Barnett, M. J. Walker, A. Imamura, H. Ishida, T. Ikebe, T. Miyamoto, M. Ato, S. Ohga, B. Lepenies, N. M. v. Sorge, S. Yamasaki, Proc. Natl. Acad. Sci. USA 2018, 115, E10662 – E10671.
dc.identifier.citedreferenceA. J. Webb, M. Karatsa-Dodgson, A. Gründling, Mol. Microbiol. 2009, 74, 299 – 314.
dc.identifier.citedreferenceI. P. Dragalin, P. K. Kintia, Phytochemistry 1975, 14, 1817 – 1820.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. A. A. van Boeckel, J. H. van Boom, Tetrahedron 1985, 41, 4567 – 4575;
dc.identifier.citedreferenceK. Takato, M. Kurita, N. Yagami, H.-N. Tanaka, H. Ando, A. Imamura, H. Ishida, Carbohydr. Res. 2019, 483, 107748.
dc.identifier.citedreference 
dc.identifier.citedreferenceV. Pozsgay, J. Kubler-Kielb, B. Coxon, A. Marques, J. B. Robbins, R. Schneerson, Carbohydr. Res. 2011, 346, 1551 – 1563;
dc.identifier.citedreferenceB. Ghosh, Y. H. Lai, Y. Y. Shih, T. K. Pradhan, C. H. Lin, K. K. T. Mong, Chem. Asian J. 2013, 8, 3191 – 3199;
dc.identifier.citedreferenceB. Cao, X. Chen, Y. Yamaryo-Botte, M. B. Richardson, K. L. Martin, G. N. Khairallah, T. W. Rupasinghe, R. M. O′Flaherty, R. A. O′Hair, J. E. Ralton, P. K. Crellin, R. L. Coppel, M. J. McConville, S. J. Williams, J. Org. Chem. 2013, 78, 2175 – 2190;
dc.identifier.citedreferenceS. D. Stamatov, J. Stawinski, Org. Biomol. Chem. 2010, 8, 463 – 477.
dc.identifier.citedreferenceJ. Ohlsson, G. Magnusson, Carbohydr. Res. 2000, 329, 49 – 55.
dc.identifier.citedreferenceR. Katoch, G. K. Trivedi, R. S. Phadke, Bioorg. Med. Chem. 1999, 7, 2753 – 2758.
dc.identifier.citedreferenceThe reaction was attempted using 4 different batches of starting material, by 5 different chemists, using 3 different fresh bottles of sodium periodate. Starting material proceeded directly to a complex mixture in all cases, and only trace amounts of the desired material were able to be isolated regardless of changes in temperature, solvent mixture, and additives. Lead(IV) acetate proceeds smoothly.
dc.identifier.citedreferenceF. Sugawara, H. Nakayama, G. A. Strobel, T. Ogawa, Agric. Biol. Chem. 1986, 50, 2251 – 2259.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Ghosh, Y.-H. Lai, Y.-Y. Shih, T. K. Pradhan, C.-H. Lin, K.-K. T. Mong, Chem. Asian J. 2013, 8, 3191 – 3199;
dc.identifier.citedreferenceC.-T. Ren, Y.-H. Tsai, Y.-L. Yang, S.-H. Wu, J. Org. Chem. 2007, 72, 5427 – 5430.
dc.identifier.citedreferenceT. Sugiyama, H. Sugawara, M. Watanabe, K. Yamashita, Agric. Biol. Chem. 1984, 48, 1841 – 1844.
dc.identifier.citedreferenceS. Vijayasaradhi, J. Singh, I. S. Aidhen, Synlett 2000, 2000, 110 – 112.
dc.identifier.citedreferenceP. E. Duffy, S. M. Quinn, H. M. Roche, P. Evans, Tetrahedron 2006, 62, 4838 – 4843.
dc.identifier.citedreferenceEstimated by 1 H NMR analysis.
dc.identifier.citedreferenceE. Manzo, M. L. Ciavatta, D. Pagano, A. Fontana, Tetrahedron Lett. 2012, 53, 879 – 881.
dc.identifier.citedreferenceT. Jefferson, in The Papers of Thomas Jefferson, Retirement Series Vol 5 (Ed. W. Duane ), Princeton Press, Princeton, 1812, pp.  293 – 294.
dc.identifier.citedreferenceH. Yu, H. E. Ensley, Tetrahedron Lett. 2003, 44, 9363 – 9366.
dc.identifier.citedreferenceD. J. Cox, M. D. Smith, A. J. Fairbanks, Org. Lett. 2010, 12, 1452 – 1455.
dc.identifier.citedreferenceA. V. Demchenko in Handbook of Chemical Glycosylation, Wiley-VCH, Weinheim, 2008, p.  501.
dc.identifier.citedreferenceY. Liu, S. Deng, L. Bai, S. Freigang, J. Mattner, L. Teyton, A. Bendelac, P. B. Savage, Bioorg. Med. Chem. Lett. 2008, 18, 3052 – 3055.
dc.identifier.citedreferenceB. A. Garcia, J. L. Poole, D. Y. Gin, J. Am. Chem. Soc. 1997, 119, 7597 – 7598.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Reese, J. Stewart, Tetrahedron Lett. 1968, 9, 4273 – 4276;
dc.identifier.citedreferenceT. Hanamoto, Y. Sugimoto, Y. Yokoyama, J. Inanaga, J. Org. Chem. 1996, 61, 4491 – 4492;
dc.identifier.citedreferenceR. Rosseto, N. Bibak, R. DeOcampo, T. Shah, A. Gabrielian, J. Hajdu, J. Org. Chem. 2007, 72, 1691 – 1698.
dc.identifier.citedreferenceS. J. Williams, Carbohydr. Res. 2019, 486, 107848.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.