Show simple item record

Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models

dc.contributor.authorKitto, David
dc.contributor.authorKamcev, Jovan
dc.date.accessioned2022-11-09T21:16:43Z
dc.date.available2023-12-09 16:16:41en
dc.date.available2022-11-09T21:16:43Z
dc.date.issued2022-11-01
dc.identifier.citationKitto, David; Kamcev, Jovan (2022). "Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models." Journal of Polymer Science 60(21): 2929-2973.
dc.identifier.issn2642-4150
dc.identifier.issn2642-4169
dc.identifier.urihttps://hdl.handle.net/2027.42/175058
dc.description.abstractThe rational design of ion exchange membranes (IEMs) is becoming more pertinent as their usage becomes broader and as their staple applications (i.e., electrodialysis, flow batteries, and fuel cells) improve in commercial viability. Such efforts would be catalyzed by an improved fundamental understanding of ion transport in IEMs. This review discusses recent progress in modeling ion partitioning and diffusion in IEMs in an effort to relate IEM performance metrics to fundamental membrane properties over which researchers and membrane manufacturers possess direct and sometimes precise control. Central focus is given to the Donnan-Manning model for ion partitioning and the Manning-Meares model for ion diffusion in IEMs. These two frameworks, which are derived from Manning’s counter-ion condensation theory for polyelectrolyte solutions, have been widely used within the IEM literature since their recent introduction. To explore this topic, the mathematical derivation of both models is revisited, followed by a survey of experimental and computational discussions of counter-ion condensation in IEMs. Alternative models which fulfill similar roles in predicting IEM transport properties are compared. This review concludes by highlighting the uniquely favorable positions of the Donnan-Manning and Manning-Meares models and discussing their prospects as leading predictors of IEM partitioning and diffusive properties.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherion activity
dc.subject.othercounter-ion condensation
dc.subject.otherion diffusion
dc.subject.otherion exchange membranes
dc.subject.otherion partitioning
dc.titleManning condensation in ion exchange membranes: A review on ion partitioning and diffusion models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175058/1/pola30290_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175058/2/pola30290.pdf
dc.identifier.doi10.1002/pol.20210810
dc.identifier.sourceJournal of Polymer Science
dc.identifier.citedreferenceM. Galizia, D. R. Paul, B. D. Freeman, Polymer (Guildf). 2016, 102, 281.
dc.identifier.citedreferenceE. Glueckauf, R. E. Watts, Proc. R. Soc. London, Ser. A 1962, 268, 339.
dc.identifier.citedreferenceK. S. Pitzer In Annual Meeting of the Geological Society of America 1987;
dc.identifier.citedreferenceH. T. Kim, W. J. Frederick, J. Chem. Eng. Data 1988, 33, 278.
dc.identifier.citedreferenceJ. M. Simonson, K. S. Pitzer, J. Phys. Chem. 1986, 90, 3009.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, B. D. Freeman, Desalination 2018, 446, 31.
dc.identifier.citedreferenceD. H. Freeman, V. C. Patel, T. M. Buchanan, J. Phys. Chem. 1965, 69, 1477.
dc.identifier.citedreferenceG. E. Boyd, K. Bunzl, J. Am. Chem. Soc. 1967, 89, 1776.
dc.identifier.citedreferenceR. L. Gustafson, J. Phys. Chem. 1963, 67, 2549.
dc.identifier.citedreferenceR. L. Gustafson, J. Phys. Chem. 1966, 70, 957.
dc.identifier.citedreferenceM. Galizia, D. R. Paul, B. D. Freeman, J. Membr. Sci. 2020, 612, 118410.
dc.identifier.citedreferenceM. Galizia, F. M. Bendetti, D. R. Paul, B. D. Freeman, J. Membr. Sci. 2017, 535, 132.
dc.identifier.citedreferenceR. S. Kingsbury, S. Zhu, S. Flotron, O. Coronell, ACS Appl. Mater. Interfaces 2018, 10, 39745.
dc.identifier.citedreferenceA. Hassanvand, G. Q. Chen, P. A. Webley, S. E. Kentish, Desalination 2017, 417, 36.
dc.identifier.citedreferenceJ. Wang, R. S. Kingsbury, L. A. Perry, O. Coronell, Environ. Sci. Technol. 2017, 51, 2295.
dc.identifier.citedreferenceA. C. Sagle, H. Ju, B. D. Freeman, M. M. Sharma, Polymer (Guildf). 2009, 50, 756.
dc.identifier.citedreferenceP. J. Flory, Principles of polymer chemistry, 1st ed., George Banta Publishing Company, Ithaca 1954.
dc.identifier.citedreferenceJ. C. Bray, E. W. Merrill, J. Appl. Polym. Sci. 1973, 17, 3779.
dc.identifier.citedreferenceJ. E. Bara, C. J. Gabriel, T. K. Carlisle, D. E. Camper, A. Finotello, D. L. Gin, R. D. Noble, Chem. Eng. J. 2009, 147, 43.
dc.identifier.citedreferenceN. R. Richbourg, N. A. Peppas, Prog. Polym. Sci. 2020, 105, 101243.
dc.identifier.citedreferenceM. Zhong, R. Wang, K. Kawamoto, B. D. Olsen, J. A. Johnson, Science (80-.). 2016, 353, 1264.
dc.identifier.citedreferenceT. Tran, C. Lin, S. Chaurasia, H. Lin, J. Membr. Sci. 2019, 574, 299.
dc.identifier.citedreferenceB. Vondrasek, C. Wen, S. Cheng, J. S. Riffle, J. J. Lesko, Macromolecules 2021, 54, 6477.
dc.identifier.citedreferenceA. Breytus, D. Hasson, R. Semiat, H. Shemer, Sep. Purif. Technol. 2019, 226, 252.
dc.identifier.citedreferenceJ. D. Wells, Biopolymers 1973, 12, 233.
dc.identifier.citedreferenceA. A. Rashin, B. Honig, J. Phys. Chem. 1985, 89, 5588.
dc.identifier.citedreferenceT. T. Duignan, X. S. Zhao, Phys. Chem. Chem. Phys. 2020, 22, 25126.
dc.identifier.citedreferenceB. Roux, H.-A. Yu, M. Karplus, J. Phys. Chem. 1990, 94, 4683.
dc.identifier.citedreferenceY. Song, C. C. Chen, Ind. Eng. Chem. Res. 2009, 48, 7788.
dc.identifier.citedreferenceG. S. Manning, J. Chem. Phys. 1993, 99, 477.
dc.identifier.citedreferenceG. S. Manning, Eur. Phys. J. E: Soft Matter Biol. Phys. 2011, 34, 39.
dc.identifier.citedreferenceJ. G. Wijmans, R. W. Baker, J. Membr. Sci. 1995, 107, 1.
dc.identifier.citedreferenceT. Luo, Y. Zhong, D. Xu, X. Wang, M. Wessling, J. Membr. Sci. 2021, 629, 119263.
dc.identifier.citedreferenceZ. Zou, L. Wu, T. Luo, Z. Yan, X. Wang, J. Membr. Sci. 2021, 635, 119496.
dc.identifier.citedreferenceR. S. Kingsbury, O. Coronell, J. Membr. Sci. 2021, 620, 118411.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, G. S. Manning, B. D. Freeman, J. Membr. Sci. 2017, 537, 396.
dc.identifier.citedreferenceH. Fan, N. Y. Yip, J. Membr. Sci. 2019, 573, 668.
dc.identifier.citedreferenceL. Masaro, X. X. Zhu, Prog. Polym. Sci. 1999, 24, 731.
dc.identifier.citedreferenceH. Yasuda, C. E. Lamaze, L. D. Ikenberry, Die Makromol. Chemie 1968, 118, 19.
dc.identifier.citedreferenceG. M. Geise, L. P. Falcon, B. D. Freeman, D. R. Paul, J. Membr. Sci. 2012, 423–424, 195.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, G. S. Manning, B. D. Freeman, ACS Appl. Mater. Interfaces 2017, 9, 4044.
dc.identifier.citedreferenceJ. Kamcev, J. Polym. Sci. 2021, 59, 2510.
dc.identifier.citedreferenceG. M. Geise, B. D. Freeman, D. R. Paul, Polymer (Guildf). 2010, 51, 5815.
dc.identifier.citedreferenceW. Xie, J. Cook, H. B. Park, B. D. Freeman, C. H. Lee, J. E. McGrath, Polymer (Guildf). 2011, 52, 2032.
dc.identifier.citedreferenceT. Sata, Ion Exchange Membranes, Royal Society of Chemistry, Cambridge 2004.
dc.identifier.citedreferenceF. Helfferich, Ion Exchange, Dover Science Books, New York 1995.
dc.identifier.citedreferenceT. Luo, S. Abdu, M. Wessling, J. Membr. Sci. 2018, 555, 429.
dc.identifier.citedreferenceS. Adhikari, M. K. Pagels, J. Y. Jeon, C. Bae, Polymer (Guildf). 2020, 211, 123080.
dc.identifier.citedreferenceL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, Membranes (Basel). 2020, 10, 1.
dc.identifier.citedreferenceP. Xiong, L. Zhang, Y. Chen, S. Peng, G. Yu, Angew. Chem. Int. Ed. 2021, 60, 24770.
dc.identifier.citedreferenceS. Jiang, H. Sun, H. Wang, B. P. Ladewig, Z. Yao, Chemosphere 2021, 282, 130817.
dc.identifier.citedreferenceS. P. Nunes, P. Z. Culfaz-Emecen, G. Z. Ramon, T. Visser, G. H. Koops, W. Jin, M. Ulbricht, J. Membr. Sci. 2020, 598, 117761.
dc.identifier.citedreferenceD. A. Salvatore, C. M. Gabardo, A. Reyes, C. P. O’Brien, S. Holdcroft, P. Pintauro, B. Bahar, M. Hickner, C. Bae, D. Sinton, E. H. Sargent, C. P. Berlinguette, Nat. Energy 2021, 6, 339.
dc.identifier.citedreferenceH. Luo, W.-A. S. Agata, G. M. Geise, Ind. Eng. Chem. Res. 2020, 59, 14189.
dc.identifier.citedreferenceP. Y. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Y. P. Yampolskii, A. B. Yaroslavtsev, Membr. Membr. Technol. 2019, 1, 45.
dc.identifier.citedreferenceG. G. Eshetu, D. Mecerreyes, M. Forsyth, H. Zhang, M. Armand, Mol. Syst. Des. Eng. 2019, 4, 294.
dc.identifier.citedreferenceJ. Kamcev, B. D. Freeman, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 111.
dc.identifier.citedreferenceH. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science (80-.). 2017, 356, 1138.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, G. S. Manning, B. D. Freeman, Macromolecules 2018, 51, 5519.
dc.identifier.citedreferenceJ. S. Mackie, P. Meares, Proc. R. Soc. London, Ser. A 1955, 232, 498.
dc.identifier.citedreferenceJ. Kamcev, C. M. Doherty, K. P. Lopez, A. J. Hill, D. R. Paul, B. D. Freeman, J. Membr. Sci. 2018, 566, 307.
dc.identifier.citedreferenceJ. Kamcev, M. Galizia, F. M. Benedetti, E.-S. Jang, D. R. Paul, B. D. Freeman, G. S. Manning, Phys. Chem. Chem. Phys. 2016, 18, 6021.
dc.identifier.citedreferenceG. S. Manning, J. Chem. Phys. 1969, 51, 924.
dc.identifier.citedreferenceG. S. Manning, J. Chem. Phys. 1969, 51, 934.
dc.identifier.citedreferenceG. S. Manning, J. Chem. Phys. 1969, 51, 3249.
dc.identifier.citedreferenceG. S. Manning, Acc. Chem. Res. 1979, 12, 443.
dc.identifier.citedreferenceG. S. Manning, Ber. Bunsenges. Phys. Chem. 1996, 100, 909.
dc.identifier.citedreferenceG. S. Manning, J. Ray, J. Biomol. Struct. Dyn. 1998, 16, 461.
dc.identifier.citedreferenceN. Kamo, Y. Toyoshima, H. Nozaki, Y. Kobatake, Kolloid-Zeitschrift Zeitschrift für Polym. 1971, 248, 914.
dc.identifier.citedreferenceS. Mafé, P. Ramírez, A. Tanioka, J. Pellicer, J. Phys. Chem. B 1997, 101, 1851.
dc.identifier.citedreferenceC. Arntsen, J. Savage, Y. L. S. Tse, G. A. Voth, Fuel Cells 2016, 16, 695.
dc.identifier.citedreferenceK. M. Beers, D. T. Hallinan, X. Wang, J. A. Pople, N. P. Balsara, Macromolecules 2011, 44, 8866.
dc.identifier.citedreferenceJ. P. Gong, N. Komatsu, T. Nitta, Y. Osada, J. Phys. Chem. B 1997, 101, 740.
dc.identifier.citedreferenceJ. Zhou, R. F. Childs, A. M. Mika, J. Membr. Sci. 2005, 260, 164.
dc.identifier.citedreferenceS. Takamuku, A. Wohlfarth, A. Manhart, P. Räder, P. Jannasch, Polym. Chem. 2015, 6, 1267.
dc.identifier.citedreferenceH. S. Dang, P. Jannasch, J. Mater. Chem. A 2016, 4, 17138.
dc.identifier.citedreferenceA. Wohlfarth, J. Smiatek, K. D. Kreuer, S. Takamuku, P. Jannasch, J. Maier, Macromolecules 2015, 48, 1134.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, B. D. Freeman, Macromolecules 2015, 48, 8011.
dc.identifier.citedreferenceG. S. Manning, Eur. Phys. J. E: Soft Matter Biol. Phys. 2011, 34, 34.
dc.identifier.citedreferenceJ. O. Bockris, A. K. N. Reddy, Modern Electrochemistry: Ionics, Vol. 1. New York: Kluwer Academic Publishers; 1998.
dc.identifier.citedreferenceG. S. Manning, J. Phys. Chem. 1984, 88, 6654.
dc.identifier.citedreferenceB. L. Rivas, I. Moreno-Villoslada, J. Phys. Chem. B 1998, 102, 6994.
dc.identifier.citedreferenceG. S. Manning, Biophys. Chem. 1977, 7, 95.
dc.identifier.citedreferenceG. S. Manning, Q. Rev. Biophys. 1978, 11, 179.
dc.identifier.citedreferenceA. Münchinger, K. D. Kreuer, J. Membr. Sci. 2019, 592, 117372.
dc.identifier.citedreferenceR. A. Robinson, R. H. Stokes, Electrolyte Solutions, Dover Publications, Inc.: Mineola, 1965.
dc.identifier.citedreferenceM. Galizia, G. S. Manning, D. R. Paul, B. D. Freeman, Polymer (Guildf). 2019, 165, 91.
dc.identifier.citedreferenceN. Yan, D. R. Paul, B. D. Freeman, Polymer (Guildf). 2018, 146, 196.
dc.identifier.citedreferenceF. Oosawa, Polyelectrolytes, 1st ed., Marcel Dekker, Inc., New York 1971.
dc.identifier.citedreferenceY. Yu, Y. Li, N. Hossain, C. C. Chen, Fluid Phase Equilib. 2019, 497, 1.
dc.identifier.citedreferenceK. D. Fong, J. Self, K. M. Diederichsen, B. M. Wood, B. D. McCloskey, K. A. Persson, ACS Cent. Sci. 2019, 5, 1250.
dc.identifier.citedreferenceJ. Ray, G. S. Manning, Macromolecules 1999, 32, 4588.
dc.identifier.citedreferenceG. S. Manning, J. Phys. Chem. B 2009, 113, 2231.
dc.identifier.citedreferenceA. V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 2005, 30, 1049.
dc.identifier.citedreferenceA. Deshkovski, S. Obukhov, M. Rubinstein, Phys. Rev. Lett. 2001, 86, 2341.
dc.identifier.citedreferenceA. Naji, R. R. Netz, Phys. Rev. Lett. 2005, 95, 3.
dc.identifier.citedreferenceC. Cametti, Polymers (Basel). 2014, 6, 1207.
dc.identifier.citedreferenceE.-S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, S. J. Talley, R. B. Moore, D. R. Paul, B. D. Freeman, Macromolecules 2019, 52, 2569.
dc.identifier.citedreferenceK. Chang, H. Luo, G. M. Geise, Macromolecules 2021, 54, 637.
dc.identifier.citedreferenceK. Chang, H. Luo, S. M. Bannon, S. Y. Lin, W. A. S. Agata, G. M. Geise, J. Membr. Sci. 2021, 630, 119298.
dc.identifier.citedreferenceK. Chang, G. M. Geise, Ind. Eng. Chem. Res. 2020, 59, 5205.
dc.identifier.citedreferenceH. Zhang, G. M. Geise, J. Membr. Sci. 2016, 520, 790.
dc.identifier.citedreferenceL. Brannon-Peppas, N. A. Peppas, Chem. Eng. Sci. 1991, 46, 715.
dc.identifier.citedreferenceJ. Crank, G. S. Park, Diffusion in Polymers, 1st ed., Academic Press Inc., New York 1968.
dc.identifier.citedreferenceN. Lakshminarayanaiah, Transport Phenomena in Membranes, 1st ed., Academic Press, Inc., New York 1969.
dc.identifier.citedreferenceC. L. Ritt, J. R. Werber, M. Wang, Z. Yang, Y. Zhao, H. J. Kulik, M. Elimelech, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 30191.
dc.identifier.citedreferenceG. Q. Chen, K. Wei, A. Hassanvand, B. D. Freeman, S. E. Kentish, Water Res. 2020, 175, 115681.
dc.identifier.citedreferenceQ. Wang, G. Q. Chen, S. E. Kentish, J. Membr. Sci. 2020, 614, 118534.
dc.identifier.citedreferenceY. Yu, N. Yan, B. D. Freeman, C. C. Chen, J. Membr. Sci. 2021, 620, 118760.
dc.identifier.citedreferenceY. Ji, H. Luo, G. M. Geise, J. Membr. Sci. 2018, 563, 492.
dc.identifier.citedreferenceA. Kusoglu, A. Z. Weber, Chem. Rev. 2017, 117, 987.
dc.identifier.citedreferenceJ. Peng, T. A. Zawodzinski, J. Membr. Sci. 2020, 593, 117340.
dc.identifier.citedreferenceR. Sujanani, L. E. Katz, D. R. Paul, B. D. Freeman, J. Membr. Sci. 2021, 638, 119687.
dc.identifier.citedreferenceM. W. Verbrugge, R. F. Hill, J. Phys. Chem. 1988, 92, 6778.
dc.identifier.citedreferenceJ. Kamcev, D. R. Paul, B. D. Freeman, J. Mater. Chem. A 2017, 5, 4638.
dc.identifier.citedreferenceM. V. Ramos-Garcés, K. Li, Q. Lei, D. Bhattacharya, S. Kole, Q. Zhang, J. Strzalka, P. P. Angelopoulou, G. Sakellariou, R. Kumar, C. G. Arges, RSC Adv. 2021, 11, 15078.
dc.identifier.citedreferenceQ. Lei, K. Li, D. Bhattacharya, J. Xiao, S. Kole, Q. Zhang, J. Strzalka, J. Lawrence, R. Kumar, C. G. Arges, J. Mater. Chem. A 2020, 8, 15962.
dc.identifier.citedreferenceM. Ballauff, A. Jusufi, Colloid Polym. Sci. 2006, 284, 1303.
dc.identifier.citedreferenceG. S. Manning, Soft Matter 2014, 10, 3738.
dc.identifier.citedreferenceD. Aryal, V. Ganesan, J. Phys. Chem. B 2018, 122, 8098.
dc.identifier.citedreferenceD. Aryal, V. Ganesan, ACS Macro Lett. 2018, 7, 739.
dc.identifier.citedreferenceD. Aryal, V. Ganesan, J. Chem. Phys. 2018, 149, 1.
dc.identifier.citedreferenceB. Vondrasek, C. Wen, S. Cheng, J. S. Riffle, J. J. Lesko, Macromolecules 2021, 54, 302.
dc.identifier.citedreferenceA. Katchalsky, I. Michaeli, J. Polym. Sci. 1955, 15, 69.
dc.identifier.citedreferenceK. B. Goh, H. Li, K. Y. Lam, Electrochim. Acta 2019, 297, 307.
dc.identifier.citedreferenceE. S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, T. J. Dilenschneider, H. B. Park, D. R. Paul, B. D. Freeman, Polymer (Guildf). 2019, 178, 121554.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.