Show simple item record

Origin of Lithiophilicity of Lithium Garnets: Compositing or Cleaning?

dc.contributor.authorZheng, Hongpeng
dc.contributor.authorLi, Guoyao
dc.contributor.authorOuyang, Runxin
dc.contributor.authorHan, Yao
dc.contributor.authorZhu, Hong
dc.contributor.authorWu, Yongmin
dc.contributor.authorHuang, Xiao
dc.contributor.authorLiu, Hezhou
dc.contributor.authorDuan, Huanan
dc.date.accessioned2022-11-09T21:16:51Z
dc.date.available2023-11-09 16:16:49en
dc.date.available2022-11-09T21:16:51Z
dc.date.issued2022-10
dc.identifier.citationZheng, Hongpeng; Li, Guoyao; Ouyang, Runxin; Han, Yao; Zhu, Hong; Wu, Yongmin; Huang, Xiao; Liu, Hezhou; Duan, Huanan (2022). "Origin of Lithiophilicity of Lithium Garnets: Compositing or Cleaning?." Advanced Functional Materials 32(41): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/175061
dc.description.abstractGarnet-type Li6.5La3Zr1.5Ta0.5O12 (LLZTO), a promising solid-state electrolyte, is reported to exhibit lithiophobicity. Herein, it is demonstrated that the origin of the lithiophobicity is closely related to the surface compositions of both the lithium and LLZTO. Surface impurities with high melting points such as Li2O, Li2CO3, LiOH, or LiF inhibit the wettability between lithium metal and LLZTO, and the widely adopted compositing strategy may improve the wettability by merely breaking the surface impurity layers. A simple but effective “polishing-and-spreading” strategy is proposed to remove the surface impurities and obtain clean Li/LLZTO interfaces. Thus, a tight and continuous Li/LLZTO interface with an interfacial resistance of 17.5 Ω cm2 is achieved, which leads to stable cycling of the symmetric Li cells and a critical current density up to 2.8 mA cm–2. This work provides a new perspective to understand the lithiophilicity of garnet-type electrolytes and contributes to designing robust Li/garnet interfaces.By comparing the wetting effect of different Li-based composite anodes, and using a “polishing-and-spreading” strategy, lithium garnet is demonstrated to well wet Li, rendering a Li/LLZO interfacial impedance of 17.5 Ω cm2 and a critical current density of 2.8 mA cm–2, without using any intermediate layer or compositing.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCCD
dc.subject.othercomposite anodes
dc.subject.otherinterfacial impedance
dc.subject.otherLLZO
dc.subject.othersurface impurities
dc.subject.otherwettability
dc.titleOrigin of Lithiophilicity of Lithium Garnets: Compositing or Cleaning?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175061/1/adfm202205778.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175061/2/adfm202205778-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175061/3/adfm202205778_am.pdf
dc.identifier.doi10.1002/adfm.202205778
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceH. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, Nano Energy 2019, 61, 119.
dc.identifier.citedreferenceX. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572.
dc.identifier.citedreferenceC.-L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, ACS Appl. Mater. Interfaces 2016, 8, 10617.
dc.identifier.citedreferenceC. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman, L. Hu, Nano Lett. 2017, 17, 565.
dc.identifier.citedreferenceB. Hu, W. Yu, B. Xu, X. Zhang, T. Liu, Y. Shen, Y.-H. Lin, C.-W. Nan, L. Li, ACS Appl. Mater. Interfaces 2019, 11, 34939.
dc.identifier.citedreferenceT. Wang, J. Duan, B. Zhang, W. Luo, X. Ji, H. Xu, Y. Huang, L. Huang, Z. Song, J. Wen, C. Wang, Y. Huang, J. B. Goodenough, Energy Environ. Sci. 2022, 15, 1325.
dc.identifier.citedreferenceL. Chen, J. Zhang, R.-A. Tong, J. Zhang, H. Wang, G. Shao, C.-A. Wang, Small 2022, 18, 2106142.
dc.identifier.citedreferencea) C. Wang, H. Xie, L. Zhang, Y. Gong, G. Pastel, J. Dai, B. Liu, E. D. Wachsman, L. Hu, Adv. Energy Mater. 2018, 8, 1701963; b) S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li, X. Liu, X.-D. Zhang, L. Liu, J.-L. Shi, Y.-X. Yin, Y.-G. Guo, Nat. Commun. 2019, 10, 4930; c) L. Chen, G. Chen, W. Tang, H. Wang, F. Chen, X. Liu, R. Ma, Mater. Today Energy 2020, 18, 100520.
dc.identifier.citedreferenceX. Fu, T. Wang, W. Shen, M. Jiang, Y. Wang, Q. Dai, D. Wang, Z. Qiu, Y. Zhang, K. Deng, Q. Zeng, N. Zhao, X. Guo, Z. Liu, J. Liu, Z. Peng, Adv. Mater. 2020, 32, 2000575.
dc.identifier.citedreferenceK. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Angew. Chem., Int. Ed. 2017, 56, 14942.
dc.identifier.citedreferencea) J. Duan, W. Wu, A. M. Nolan, T. Wang, J. Wen, C. Hu, Y. Mo, W. Luo, Y. Huang, Adv. Mater. 2019, 31, 1807243; b) J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang, Y. Xie, S. Li, J. Li, Y. Huang, Natl. Sci. Rev. 2020, 7, 1208.
dc.identifier.citedreferenceY. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem., Int. Ed. 2020, 59, 3699.
dc.identifier.citedreferenceJ. Wen, Y. Huang, J. Duan, Y. Wu, W. Luo, L. Zhou, C. Hu, L. Huang, X. Zheng, W. Yang, Z. Wen, Y. Huang, ACS Nano 2019, 13, 14549.
dc.identifier.citedreferenceZ. Tong, S.-B. Wang, Y.-K. Liao, S.-F. Hu, R.-S. Liu, ACS Appl. Mater. Interfaces 2020, 12, 47181.
dc.identifier.citedreferencea) J.-F. Wu, B.-W. Pu, D. Wang, S.-Q. Shi, N. Zhao, X. Guo, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 898; b) H. Zheng, S. Wu, R. Tian, Z. Xu, H. Zhu, H. Duan, H. Liu, Adv. Funct. Mater. 2020, 30, 1906189; c) L. Chen, Y. Su, J. Zhang, H. Zhang, B. Fan, G. Shao, M. Zhong, C.-A. Wang, ACS Appl. Mater. Interfaces 2021, 13, 37082.
dc.identifier.citedreferencea) H. Duan, H. Zheng, Y. Zhou, B. Xu, H. Liu, Solid State Ionics 2018, 318, 45; b) W. Xia, B. Xu, H. Duan, X. Tang, Y. Guo, H. Kang, H. Li, H. Liu, J. Am. Ceram. Soc. 2017, 100, 2832.
dc.identifier.citedreferenceY. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, J. B. Goodenough, Angew. Chem., Int. Ed. 2017, 56, 753.
dc.identifier.citedreferenceA. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961.
dc.identifier.citedreferencea) W. Luo, Y. Gong, Y. Zhu, K. K. Fu, J. Dai, S. D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E. D. Wachsman, L. Hu, J. Am. Chem. Soc. 2016, 138, 12258; b) X. Xiang, Y. Zhang, H. Wang, C. Wei, F. Chen, Q. Shen, J. Electrochem. Soc. 2021, 168, 060515; c) R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y. E. Romanyuk, L. P. H. Jeurgens, M. V. Kovalenko, K. V. Kravchyk, Adv. Energy Mater. 2021, 11, 2102086; d) Y. Ruan, Y. Lu, X. Huang, J. Su, C. Sun, J. Jin, Z. Wen, J. Mater. Chem. A 2019, 7, 14565; e) C. Cui, Q. Ye, C. Zeng, S. Wang, X. Xu, T. Zhai, H. Li, Energy Storage Mater. 2022, 45, 814; f) G. Yang, Y. Zhang, Z. Guo, C. Zhao, X. Bai, L. Fan, N. Zhang, Electrochim. Acta 2022, 407, 139767.
dc.identifier.citedreferencea) C. Wang, H. Xie, W. Ping, J. Dai, G. Feng, Y. Yao, S. He, J. Weaver, H. Wang, K. Gaskell, L. Hu, Energy Storage Mater. 2019, 17, 234; b) H. Huo, X. Li, Y. Sun, X. Lin, K. Doyle-Davis, J. Liang, X. Gao, R. Li, H. Huang, X. Guo, X. Sun, Nano Energy 2020, 73, 104836.
dc.identifier.citedreferenceS.-K. Otto, Y. Moryson, T. Krauskopf, K. Peppler, J. Sann, J. Janek, A. Henss, Chem. Mater. 2021, 33, 859.
dc.identifier.citedreferenceR. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
dc.identifier.citedreferenceJ. Wang, H. Wang, J. Xie, A. Yang, A. Pei, C.-L. Wu, F. Shi, Y. Liu, D. Lin, Y. Gong, Y. Cui, Energy Storage Mater. 2018, 14, 345.
dc.identifier.citedreferenceK. Kanamura, H. Tamura, S. Shiraishi, Z. i. Takehara, J. Electrochem. Soc. 1995, 142, 340.
dc.identifier.citedreferencea) J. Meng, Y. Zhang, X. Zhou, M. Lei, C. Li, Nat. Commun. 2020, 11, 3716; b) W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.-F. Lin, Y. Mo, E. D. Wachsman, L. Hu, Adv. Mater. 2017, 29, 1606042; c) W. Feng, X. Dong, Z. Lai, X. Zhang, Y. Wang, C. Wang, J. Luo, Y. Xia, ACS Energy Lett. 2019, 4, 1725.
dc.identifier.citedreferencea) M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, J. Power Sources 2011, 196, 7750; b) K. H. Kim, T. Hirayama, C. A. J. Fisher, K. Yamamoto, T. Sato, K. Tanabe, S. Kumazaki, Y. Iriyama, Z. Ogumi, Mater. Charact. 2014, 91, 101.
dc.identifier.citedreferencea) Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J. B. Goodenough, J. Am. Chem. Soc. 2018, 140, 6448; b) M. He, Z. Cui, C. Chen, Y. Li, X. Guo, J. Mater. Chem. A 2018, 6, 11463.
dc.identifier.citedreferencea) X. Ma, Y. Xu, Electrochim. Acta 2022, 409, 139986; b) K. Lee, S. Han, J. Lee, S. Lee, J. Kim, Y. Ko, S. Kim, K. Yoon, J.-H. Song, J. H. Noh, K. Kang, ACS Energy Lett. 2022, 7, 381; c) X. He, F. Yan, M. Gao, Y. Shi, G. Ge, B. Shen, J. Zhai, ACS Appl. Mater. Interfaces 2021, 13, 42212.
dc.identifier.citedreferenceL. Zhuang, X. Huang, Y. Lu, J. Tang, Y. Zhou, X. Ao, Y. Yang, B. Tian, Ceram. Int. 2021, 47, 22768.
dc.identifier.citedreferenceN. D. Lepley, N. A. W. Holzwarth, Phys. Rev. B 2015, 92, 214201.
dc.identifier.citedreferenceX. Jin, Z. Cai, X. Zhang, J. Yu, Q. He, Z. Lu, M. Dahbi, J. Alami, J. Lu, K. Amine, H. Zhang, Adv. Mater. 2022, 34, 2200181.
dc.identifier.citedreferenceH. Zheng, G. Li, J. Liu, S. Wu, X. Zhang, Y. Wu, H. Zhu, X. Huang, H. Liu, H. Duan, Energy Storage Mater. 2022, 49, 278.
dc.identifier.citedreferenceZ. Huang, L. Chen, B. Huang, B. Xu, G. Shao, H. Wang, Y. Li, C.-A. Wang, ACS Appl. Mater. Interfaces 2020, 12, 56118.
dc.identifier.citedreferenceJ. Wolfenstine, J. L. Allen, J. Read, J. Sakamoto, J. Mater. Sci. 2013, 48, 5846.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.