Show simple item record

Bacteriophobic Zwitterionic/Dopamine Coatings for Medical Elastomers

dc.contributor.authorTexidó, Robert
dc.contributor.authorCabanach, Pol
dc.contributor.authorKaplan, Richard
dc.contributor.authorGarcía-Bonillo, Cristina
dc.contributor.authorPérez, Darío
dc.contributor.authorZhang, Shuo
dc.contributor.authorBorrós, Salvador
dc.contributor.authorPena-Francesch, Abdon
dc.date.accessioned2022-11-09T21:17:19Z
dc.date.available2023-11-09 16:17:17en
dc.date.available2022-11-09T21:17:19Z
dc.date.issued2022-10
dc.identifier.citationTexidó, Robert ; Cabanach, Pol; Kaplan, Richard; García-Bonillo, Cristina ; Pérez, Darío ; Zhang, Shuo; Borrós, Salvador ; Pena-Francesch, Abdon (2022). "Bacteriophobic Zwitterionic/Dopamine Coatings for Medical Elastomers." Advanced Materials Interfaces 9(30): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/175074
dc.description.abstractDespite modern advancements in sterilization and medical practices, bacterial infections remain a significant concern in the implantation of medical devices. There is currently an urgent need for long-lasting and high-stable strategies to avoid the adhesion of bacteria to the wide range of materials present in medical devices. Here, a versatile methodology to create anti-biofouling coatings that prevent the adhesion of bacteria to silicone-based materials used in healthcare is reported. These coatings consist of bifunctional ethylene glycol dimethacrylate as an anchor between a zwitterionic polymer (SBMA), which provides antifouling properties, and a polydopamine layer that operates as an interfacial binder, providing mechanical strength and strong adhesion to elastomeric substrates. The coatings exhibit superhydrophilic and anti-biofouling properties, creating a strong “bacteriophobic effect” that leads to a >99% reduction in bacterial adhesion. This bacteriophobic coating is successfully implemented and validated in a commercial urinary catheter, reducing bacterial adhesion by 1–2 orders of magnitude and avoiding bacterial colonization to prevent catheter-associated urinary tract infections. The results presented here demonstrate the versatility, durability, and scalability of the coating methodology for preventing bacterial adhesion in silicone elastomers, which can be easily applied to other elastomeric materials used in medical devices beyond urinary tract infection prevention.A multilayer zwitterionic coating strategy is introduced to avoid bacterial colonization in medical elastomeric devices. The coating combines high mechanical stability and strong bonding to stretchable substrates with high hydrophilicity and antibiofouling properties. Bacterial adhesion on a coated urinary catheter is significatively reduced (2 orders of magnitude decrease from commercial devices) after incubation with uropathogenic bacteria.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherurinary catheter
dc.subject.otherantibiofouling
dc.subject.otherbacteriophobic coatings
dc.subject.otherbiopolymer
dc.subject.othermedical device
dc.subject.othermedical elastomer
dc.subject.otherzwitterionic polymer
dc.titleBacteriophobic Zwitterionic/Dopamine Coatings for Medical Elastomers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175074/1/admi202201152.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175074/2/admi202201152_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175074/3/admi202201152-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/admi.202201152
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science. 2007, 318, 426.
dc.identifier.citedreferenceP. Cabanach, A. Pena-Francesch, D. Sheehan, U. Bozuyuk, O. Yasa, S. Borros, M. Sitti, Adv. Mater. 2020, 32, 2003013.
dc.identifier.citedreferenceA. Biosca, P. Cabanach, M. Abdulkarim, M. Gumbleton, C. Gómez-Canela, M. Ramírez, I. Bouzón-Arnáiz, Y. Avalos-Padilla, S. Borros, X. Fernàndez-Busquets, J. Controlled Release 2021, 331, 364.
dc.identifier.citedreferenceX. Han, Y. Lu, J. Xie, E. Zhang, H. Zhu, H. Du, K. Wang, B. Song, C. Yang, Y. Shi, Z. Q. Cao, Nat. Nanotechnol. 2020, 15, 605.
dc.identifier.citedreferenceJ. Baggerman, M. M. J. Smulders, H. Zuilhof, Langmuir 2019, 35, 1072.
dc.identifier.citedreferenceY.-S. Wang, S. Yau, L.-K. Chau, A. Mohamed, C.-J. Huang, Langmuir 2019, 35, 1652.
dc.identifier.citedreferenceA. R. Statz, R. J. Meagher, A. E. Barron, P. B. Messersmith, J. Am. Chem. Soc. 2005, 127, 7972.
dc.identifier.citedreferenceC. Y. Liu, C. J. Huang, Langmuir 2016, 32, 5019.
dc.identifier.citedreferenceL. Q. Xu, D. Pranantyo, K. G. Neoh, E. T. Kang, S. L. M. Teo, G. D. Fu, Polym. Chem. 2016, 7, 493.
dc.identifier.citedreferenceA. Golabchi, B. Wu, B. Cao, C. J. Bettinger, X. T. Cui, Biomaterials 2019, 225, 119519.
dc.identifier.citedreferenceW. Zhang, F. K. Yang, Y. Han, R. Gaikwad, Z. Leonenko, B. Zhao, Biomacromolecules 2013, 14, 394.
dc.identifier.citedreferenceH. Zhang, M. Chiao, J. Med. Biol. Eng. 2015, 35, 143.
dc.identifier.citedreferenceY. Yu, H. Yuk, G. A. Parada, Y. Wu, X. Liu, C. S. Nabzdyk, K. Youcef-Toumi, J. Zang, X. Zhao, Adv. Mater. 2019, 31, 1807101.
dc.identifier.citedreferenceA. B. Asha, Y. Chen, R. Narain, Chem. Soc. Rev. 2021, 50, 11668.
dc.identifier.citedreferenceH. Kitano, T. Mori, Y. Takeuchi, S. Tada, M. Gemmei-Ide, Y. Yokoyama, M. Tanaka, Macromol. Biosci. 2005, 5, 314.
dc.identifier.citedreferenceT. Trantidou, Y. Elani, E. Parsons, O. Ces, Microsyst. Nanoeng. 2017, 3, 16091.
dc.identifier.citedreferenceY.-F. Yang, Y. Li, Q.-L. Li, L.-S. Wan, Z.-K. Xu, J. Memb. Sci. 2010, 362, 255.
dc.identifier.citedreferenceM. Kobayashi, Y. Terayama, H. Yamaguchi, M. Terada, D. Murakami, K. Ishihara, A. Takahara, Langmuir 2012, 28, 7212.
dc.identifier.citedreferenceV. Sariola, A. Pena-Francesch, H. Jung, M. Çetinkaya, C. Pacheco, M. Sitti, M. C. Demirel, Sci. Rep. 2015, 5, 13482.
dc.identifier.citedreferenceD. M. Drotlef, C. B. Dayan, M. Sitti, Integr. Comp. Biol. 2019, 59, 227.
dc.identifier.citedreferenceM. Zhou, Y. Tian, D. Sameoto, X. Zhang, Y. Meng, S. Wen, ACS Appl. Mater. Interfaces 2013, 5, 10137.
dc.identifier.citedreferenceR. Orme, C. W. I. Douglas, S. Rimmer, M. Webb, Proteomics 2006, 6, 4269.
dc.identifier.citedreferenceP. J. Molino, M. J. Higgins, P. C. Innis, R. M. I. Kapsa, G. G. Wallace, Langmuir 2012, 28, 8433.
dc.identifier.citedreferenceC. García-Bonillo, R. Texidó, G. Reyes-Carmenaty, J. Gilabert-Porres, S. Borrós, ACS Appl. Biol. Mater. 2020, 3, 3354.
dc.identifier.citedreferenceL. Mi, S. Jiang, Angew. Chem., Int. Ed. 2014, 53, 1746.
dc.identifier.citedreferenceL. Zhang, Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B. D. Ratner, S. Jiang, Nat. Biotechnol. 2013, 31, 553.
dc.identifier.citedreferenceC. Liu, A. F. Faria, J. Ma, M. Elimelech, Environ. Sci. Technol. 2017, 51, 182.
dc.identifier.citedreferenceN. Encinas, C.-Y. Yang, F. Geyer, A. Kaltbeitzel, P. Baumli, J. Reinholz, V. Mailänder, H.-J. Butt, D. Vollmer, ACS Appl. Mater. Interfaces 2020, 12, 21192.
dc.identifier.citedreferenceG. Y. Liu, V. Nizet, Trends Microbiol. 2009, 17, 406.
dc.identifier.citedreferenceJ. R. Kamitakahara, W. J. Polglase, Biochem. J. 1970, 120, 771.
dc.identifier.citedreferenceL. Zheng, H. S. Sundaram, Z. Wei, C. Li, Z. Yuan, React. Funct. Polym. 2017, 118, 51.
dc.identifier.citedreferenceJ. B. Schlenoff, Langmuir 2014, 30, 9625.
dc.identifier.citedreferenceJ. Ladd, Z. Zhang, S. Chen, J. C. Hower, S. Jiang, Biomacromolecules 2008, 9, 1357.
dc.identifier.citedreferenceZ. Cao, L. Zhang, S. Jiang, Langmuir 2012, 28, 11625.
dc.identifier.citedreferenceF. M. Veronese, A. Mero, BioDrugs 2008, 22, 315.
dc.identifier.citedreferenceL. E. Nicolle, Antimicrob. Resist. Infect. Control 2014, 3, 1.
dc.identifier.citedreferenceA. S. Letica-Kriegel, H. Salmasian, D. K. Vawdrey, B. E. Youngerman, R. A. Green, E. Y. Furuya, D. P. Calfee, R. Perotte, BMJ Open 2019, 9, e022137.
dc.identifier.citedreferenceN. Sabir, A. Ikram, G. Zaman, L. Satti, A. Gardezi, A. Ahmed, P. Ahmed, Am. J. Infect. Control 2017, 45, 1101.
dc.identifier.citedreferenceA. L. Flores-Mireles, J. N. Walker, M. Caparon, S. J. Hultgren, Nat. Rev. Microbiol. 2015, 13, 269.
dc.identifier.citedreferenceD. K. Newman, J. wound, ostomy, C., Nurs. Off. Publ. Wound, Ostomy Cont. Nurses Soc. 2007, 34, 655.
dc.identifier.citedreferenceB. W. Trautner, R. O. Darouiche, Arch. Intern. Med. 2004, 164, 842.
dc.identifier.citedreferenceL. E. Nicolle, Drugs Aging 2005, 22, 627.
dc.identifier.citedreferenceZ. Zhu, Z. Wang, S. Li, X. Yuan, J. Biomed. Mater. Res., Part A 2019, 107, 445.
dc.identifier.citedreferenceE. M. Hetrick, M. H. Schoenfisch, Chem. Soc. Rev. 2006, 35, 780.
dc.identifier.citedreferenceE. R. Kenawy, S. D. Worley, R. Broughton, Biomacromolecules 2007, 8, 1359.
dc.identifier.citedreferenceA. Dhyani, J. Wang, A. K. Halvey, B. Macdonald, G. Mehta, A. Tuteja, Science 2021, 373, 321.
dc.identifier.citedreferenceS. Chen, L. Li, C. Zhao, J. Zheng, Polymer 2010, 51, 5283.
dc.identifier.citedreferenceJ. M. Harris, R. B. Chess, Nat. Rev. Drug Discovery 2003, 2, 214.
dc.identifier.citedreferenceH. Vaisocherová, W. Yang, Z. Zhang, Z. Cao, G. Cheng, M. Piliarik, J. Homola, S. Jiang, Anal. Chem. 2008, 80, 7894.
dc.identifier.citedreferenceS. Jiang, Z. Cao, Adv. Mater. 2010, 22, 920.
dc.identifier.citedreferenceB. Dong, S. Manolache, A. C. L. Wong, F. S. Denes, Polym. Bull. 2011, 66, 517.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.