Show simple item record

Proton Precipitation in Mercury’s Northern Magnetospheric Cusp

dc.contributor.authorRaines, Jim M.
dc.contributor.authorDewey, Ryan M.
dc.contributor.authorStaudacher, Natalie M.
dc.contributor.authorTracy, Patrick J.
dc.contributor.authorBert, Christopher M.
dc.contributor.authorSarantos, Menelaos
dc.contributor.authorGershman, Daniel J.
dc.contributor.authorJasinski, Jamie M.
dc.contributor.authorBowers, Charles F.
dc.contributor.authorFisher, Erik
dc.contributor.authorSlavin, James A.
dc.date.accessioned2022-11-09T21:17:57Z
dc.date.available2023-12-09 16:17:55en
dc.date.available2022-11-09T21:17:57Z
dc.date.issued2022-11
dc.identifier.citationRaines, Jim M.; Dewey, Ryan M.; Staudacher, Natalie M.; Tracy, Patrick J.; Bert, Christopher M.; Sarantos, Menelaos; Gershman, Daniel J.; Jasinski, Jamie M.; Bowers, Charles F.; Fisher, Erik; Slavin, James A. (2022). "Proton Precipitation in Mercury’s Northern Magnetospheric Cusp." Journal of Geophysical Research: Space Physics 127(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/175086
dc.description.abstractIon precipitation onto Mercury’s surface through its magnetospheric cusps acts as a source of planetary atoms to both Mercury’s exosphere and magnetosphere. Through the process of ion sputtering, solar wind ions (∼95% protons) impact the surface regolith and liberate material, mostly as neutral atoms. We have identified 2760 northern magnetospheric cusp crossings throughout the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) mission, based on enhancements in proton flux observed by the Fast Imaging Plasma Spectrometer (FIPS). We find cusp crossings spanning 50–85° in magnetic latitude with a geometric center typically at 60–70°. The cusp center is stable about its average but its latitudinal extent varies orbit-to-orbit. The mean latitude weakly depends on the magnitude of the interplanetary magnetic field (IMF), dropping by about 1.3° magnetic latitude for each increase of 10 nT in IMF strength. We have used these identified cusp boundaries to estimate the flux of protons which will precipitate onto Mercury’s surface. We find an average proton precipitation flux of 1.0 × 107 cm−2 s−1, ranging 3.3 × 104–6.2 × 108 cm−2 s−1, and that this flux can vary substantially between subsequent 10-s measurements. We also tabulated the peak precipitation fluxes for each cusp crossing. They range 9.8 × 104–1.4 × 109 cm−2 s−1, with a mean of 3.7 × 107 cm−2 s−1. We find strong dependencies on the local time of the cusp crossing as well as on Mercury’s orbit around the Sun, which warrant further investigation.Key PointsMercury’s northern cusp was found at 50°–85° magnetic latitude in 2760 MErcury Surface, Space ENvironment, GEochemistry and Ranging orbits, falling by 1.3° per 10 nT increase in interplanetary magnetic fieldAverage proton precipitation flux was 1.0 × 107 cm−2 s−1, ranging 3.3 × 104–6.2 × 108 cm−2 s−1 in the 707 orbits with B vector in viewProton precipitation flux can vary by two orders of magnitude in subsequent 10-s measurements with peak fluxes up to 1.4 × 109 cm−2 s−1
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of Michigan
dc.subject.othersputtering
dc.subject.otherplasma
dc.subject.otherprecipitation
dc.subject.otherMercury
dc.subject.othermagnetosphere
dc.subject.otherFIPS
dc.titleProton Precipitation in Mercury’s Northern Magnetospheric Cusp
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175086/1/jgra57456.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175086/2/2022JA030397-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175086/3/jgra57456_am.pdf
dc.identifier.doi10.1029/2022JA030397
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePotter, A. E., Killen, R. M., & Sarantos, M. ( 2006 ). Spatial distribution of sodium on Mercury. Icarus, 181, 1 – 12. https://doi.org/10.1016/j.icarus.2005.10.026
dc.identifier.citedreferenceLavraud, B., Rème, H., Dunlop, M. W., Bosqued, J.-M., Dandouras, I., Sauvaud, J.-A., et al. ( 2005 ). Cluster observes the high-altitude CUSP region. Surveys in Geophysics, 26 ( 1–3 ), 135 – 175. https://doi.org/10.1007/s10712-005-1875-3
dc.identifier.citedreferenceLeblanc, F., & Johnson, R. E. ( 2003 ). Mercury’s sodium exosphere. Icarus, 164 ( 2 ), 261 – 281. https://doi.org/10.1016/S0019-1035(03)00147-7
dc.identifier.citedreferenceMadey, T. E., Yakshinskiy, B. V., Ageev, V. N., & Johnson, R. E. ( 1998 ). Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon. Journal of Geophysical Research, 103 ( E3 ), 5873 – 5888. https://doi.org/10.1029/98JE00230
dc.identifier.citedreferenceMangano, V., Massetti, S., Milillo, A., Plainaki, C., Orsini, S., Rispoli, R., & Leblanc, F. ( 2015 ). THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planetary and Space Science, 115, 102 – 109. https://doi.org/10.1016/j.pss.2015.04.001
dc.identifier.citedreferenceMassetti, S., Orsini, S., Milillo, A., Mura, A., De Angelis, E., Lammer, H., & Wurz, P. ( 2003 ). Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166 ( 2 ), 229 – 237. https://doi.org/10.1016/j.icarus.2003.08.005
dc.identifier.citedreferenceMcLain, J. L., Sprague, A. L., Grieves, G. A., Schriver, D., Travnicek, P., & Orlando, T. M. ( 2011 ). Electron-stimulated desorption of silicates: A potential source for ions in Mercury’s space environment. Journal of Geophysical Research, 116 ( E3 ), E03007. https://doi.org/10.1029/2010JE003714
dc.identifier.citedreferenceMerkel, A. W., Cassidy, T. A., Vervack, R. J., McClintock, W. E., Sarantos, M., Burger, M. H., & Killen, R. M. ( 2017 ). Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus, 281, 46 – 54. https://doi.org/10.1016/j.icarus.2016.08.032
dc.identifier.citedreferenceMilillo, A., Wurz, P., Orsini, S., Delcourt, D., Kallio, E., Killen, R. M., et al. ( 2005 ). Surface-exosphere-magnetosphere system of Mercury. Space Science Reviews, 117 ( 3–4 ), 397 – 443. https://doi.org/10.1007/s11214-005-3593-z
dc.identifier.citedreferenceOrsini, S., Mangano, V., Milillo, A., Plainaki, C., Mura, A., Raines, J. M., et al. ( 2018 ). Mercury sodium exospheric emission as a proxy for solar perturbations transit. Scientific Reports, 8 ( 1 ), 928. https://doi.org/10.1038/s41598-018-19163-x
dc.identifier.citedreferencePfleger, M., Lichtenegger, H. I. M., Wurz, P., Lammer, H., Kallio, E., Alho, M., et al. ( 2015 ). 3D-modeling of Mercury’s solar wind sputtered surface-exosphere environment. Planetary and Space Science, 115, 90 – 101. https://doi.org/10.1016/j.pss.2015.04.016
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., Imber, S. M., et al. ( 2016 ). MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8260 – 8285. https://doi.org/10.1002/2016JA022552
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119 ( 8 ), 6587 – 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceSarantos, M., Killen, R. M., & Kim, D. ( 2007 ). Predicting the long-term solar wind ion-sputtering source at Mercury. Planetary and Space Science, 55 ( 11 ), 1584 – 1595. https://doi.org/10.1016/j.pss.2006.10.011
dc.identifier.citedreferenceSarantos, M., Killen, R. M., McClintock, W. E., Bradley, E. T., Vervack, R. J., Benna, M., & Slavin, J. A. ( 2011 ). Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planetary and Space Science, 59 ( 15 ), 1992 – 2003. https://doi.org/10.1016/j.pss.2011.05.002
dc.identifier.citedreferenceSlavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., et al. ( 2008 ). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321 ( 5885 ), 85 – 89. https://doi.org/10.1126/science.1159040
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., et al. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Zurbuchen, T. H., et al. ( 2014 ). MESSENGER observations of Mercury’s magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER: Mission overview. Space Science Reviews, 131 ( 1–4 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceSonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., et al. ( 1981 ). Evidence for magnetic field reconnection at the earth’s magnetopause. Journal of Geophysical Research, 86 ( A12 ), 10049 – 10067. https://doi.org/10.1029/JA086iA12p10049
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., et al. ( 2020 ). Flux transfer event showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the Dungey cycle. Geophysical Research Letters, 47 ( 21 ), e89784. https://doi.org/10.1029/2020GL089784
dc.identifier.citedreferenceTracy, P. J. ( 2016 ). In-situ plasma analysis of ion kinetics in the solar wind and Hermean magnetosphere, Ph.D. thesis, dissertation abstracts international, volume: 78-07(E), section: B (p. 257 ). University of Michigan.
dc.identifier.citedreferenceVervack, R. J., Jr., Killen, R. M., McClintock, W. E., Merkel, A. W., Burger, M. H., Cassidy, T. A., & Sarantos, M. ( 2016 ). New discoveries from MESSENGER and insights into Mercury’s exosphere. Geophysical Research Letters, 43 ( 11 ), 545 – 11,551. https://doi.org/10.1002/2016GL071284
dc.identifier.citedreferenceVervack, R. J., McClintock, W. E., Killen, R. M., Sprague, A. L., Anderson, B. J., Burger, M. H., et al. ( 2010 ). Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science, 329 ( 5992 ), 672 – 675. https://doi.org/10.1126/science.1188572
dc.identifier.citedreferenceWiens, R. C., Burnett, D. S., Calaway, W. F., Hansen, C. S., Lykke, K. R., & Pellin, M. J. ( 1997 ). Sputtering products of sodium sulfate: Implications for Io’s surface and for sodium-bearing molecules in the Io torus. Icarus, 128 ( 2 ), 386 – 397. https://doi.org/10.1006/icar.1997.5758
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Gershman, D. J., Raines, J. M., Lillis, R. J., et al. ( 2014 ). Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophysical Research Letters, 41 ( 13 ), 4463 – 4470. https://doi.org/10.1002/2014GL060258
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E., & Solomon, S. C. ( 2012 ). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophysical Research Letters, 39 ( 8 ), L08112. https://doi.org/10.1029/2012GL051472
dc.identifier.citedreferenceYakshinskiy, B. V., Madey, T. E., & Ageev, V. N. ( 2000 ). Thermal desorption of sodium atoms from thin SiO 2 films. Surface Review and Letters, 7 ( 01n02 ), 75 – 87. https://doi.org/10.1142/s0218625x00000117
dc.identifier.citedreferenceZhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., et al. ( 2015 ). Mercury’s three-dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7658 – 7671. https://doi.org/10.1002/2015JA021425
dc.identifier.citedreferenceZurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., et al. ( 2011 ). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333 ( 6051 ), 1862 – 1865. https://doi.org/10.1126/science.1211302
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data Services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44 ( 1 ), 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceActon, C. H., Bachman, N., Semenov, B., & Wright, E. ( 2017 ). A look toward the future in the handling of space science mission geometry. Planetary and Space Science, 150, 9 – 12. https://doi.org/10.1016/j.pss.2017.02.013
dc.identifier.citedreferenceAnderson, B. J., Acuna, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1–4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., & Korth, H. ( 2013 ). A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER Magnetometer data. Geochemistry, Geophysics, Geosystems, 14 ( 9 ), 3875 – 3886. https://doi.org/10.1002/ggge.20242
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., et al. ( 2007 ). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1–4 ), 523 – 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceBenna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., et al. ( 2010 ). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209 ( 1 ), 3 – 10. https://doi.org/10.1016/j.icarus.2009.11.036
dc.identifier.citedreferenceBurger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J., Jr., Cassidy, T. A., & Sarantos, M. ( 2014 ). Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 51 – 58. https://doi.org/10.1016/j.icarus.2014.04.049
dc.identifier.citedreferenceBurger, M. H., Killen, R. M., McClintock, W. E., Vervack, R. J., Jr., Merkel, A. W., Sprague, A. L., & Sarantos, M. ( 2012 ). Modeling MESSENGER observations of calcium in Mercury’s exosphere. Journal of Geophysical Research, 117 ( E12 ), E00L11. https://doi.org/10.1029/2012JE004158
dc.identifier.citedreferenceBurton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). The terrestrial magnetosphere: A half-wave rectifier of the interplanetary electric field. Science, 189 ( 4204 ), 717 – 718. https://doi.org/10.1126/science.189.4204.717
dc.identifier.citedreferenceCassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E., & Vervack, R. J. ( 2015 ). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547 – 559. https://doi.org/10.1016/j.icarus.2014.10.037
dc.identifier.citedreferenceDelcourt, D. C., Martin, R. F., & Alem, F. ( 1994 ). A simple model of magnetic moment scattering in a field reversal. Geophysical Research Letters, 21 ( 14 ), 1543 – 1546. https://doi.org/10.1029/94GL01291
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. ( 2018 ). MESSENGER observations of fast plasma flows in Mercury’s magnetotail. Geophysical Research Letters, 45 ( 19 ), 10110 – 10118. https://doi.org/10.1029/2018GL079056
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118 ( 3 ), 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDomingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., et al. ( 2014 ). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181 ( 1–4 ), 121 – 214. https://doi.org/10.1007/s11214-014-0039-5
dc.identifier.citedreferenceDomingue, D. L., Koehn, P. L., Killen, R. M., Sprague, A. L., Sarantos, M., Cheng, A. F., et al. ( 2007 ). Mercury’s atmosphere: A surface-bounded exosphere. Space Science Reviews, 131 ( 1–4 ), 161 – 186. https://doi.org/10.1007/s11214-007-9260-9
dc.identifier.citedreferenceFatemi, S., Poirier, N., Holmström, M., Lindkvist, J., Wieser, M., & Barabash, S. ( 2018 ). A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury’s magnetosphere. Astronomy and Astrophysics, 614, A132. https://doi.org/10.1051/0004-6361/201832764
dc.identifier.citedreferenceFatemi, S., Poppe, A. R., & Barabash, S. ( 2020 ). Hybrid simulations of solar wind proton precipitation to the surface of Mercury. Journal of Geophysical Research: Space Physics, 125 ( 4 ), e27706. https://doi.org/10.1029/2019JA027706
dc.identifier.citedreferenceGershman, D. J., Dorelli, J. C., DiBraccio, G. A., Raines, J. M., Slavin, J. A., Poh, G., & Zurbuchen, T. H. ( 2016 ). Ion-scale structure in Mercury’s magnetopause reconnection diffusion region. Geophysical Research Letters, 43 ( 12 ), 5935 – 5942. https://doi.org/10.1002/2016GL069163
dc.identifier.citedreferenceGershman, D. J., F-Viñas, A., Dorelli, J. C., Boardsen, S. A., Avanov, L. A., Bellan, P. M., et al. ( 2017 ). Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave. Nature Communications, 8 ( 1 ), 14719. https://doi.org/10.1038/ncomms14719
dc.identifier.citedreferenceGershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2015 ). MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere. Journal of Geophysical Research: Space Physics, 120 ( 10 ), 8559 – 8571. https://doi.org/10.1002/2015JA021610
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118 ( 11 ), 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., et al. ( 2014 ). Ion kinetic properties in Mercury’s pre-midnight plasma sheet. Geophysical Research Letters, 41 ( 16 ), 5740 – 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceGershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., et al. ( 2012 ). Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. Journal of Geophysical Research: Space Physics, 117 ( A12 ), A00M02. https://doi.org/10.1029/2012JA017829
dc.identifier.citedreferenceGloeckler, G., Cain, J., Ipavich, F. M., Tums, E. O., Bedini, P., Fisk, L. A., et al. ( 1998 ). Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Science Reviews, 86 ( 1/4 ), 497 – 539. https://doi.org/10.1023/A:1005036131689
dc.identifier.citedreferenceHe, M., Vogt, J., Heyner, D., & Zhong, J. ( 2017 ). Solar wind controls on Mercury’s magnetospheric cusp. Journal of Geophysical Research: Space Physics, 122 ( 6 ), 6150 – 6164. https://doi.org/10.1002/2016JA023687
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L., Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? Journal of Geophysical Research: Space Physics, 119 ( 7 ), 5613 – 5623. https://doi.org/10.1002/2014JA019884
dc.identifier.citedreferenceJames, M. K., Imber, S. M., Bunce, E. J., Yeoman, T. K., Lockwood, M., Owens, M. J., & Slavin, J. A. ( 2017 ). Interplanetary magnetic field properties and variability near Mercury’s orbit. Journal of Geophysical Research: Space Physics, 122 ( 8 ), 7907 – 7924. https://doi.org/10.1002/2017JA024435
dc.identifier.citedreferenceJasinski, J. M., Cassidy, T. A., Raines, J. M., Milillo, A., Regoli, L. H., Dewey, R., et al. ( 2021 ). Photoionization loss of Mercury’s sodium exosphere: Seasonal observations by MESSENGER and the THEMIS telescope. Geophysical Research Letters, 48 ( 8 ), e2021GL092980. https://doi.org/10.1029/2021GL092980
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 12153 – 12169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceKallio, E., & Janhunen, P. ( 2003 ). Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Annales Geophysicae, 21 ( 11 ), 2133 – 2145. https://doi.org/10.5194/angeo-21-2133-2003
dc.identifier.citedreferenceKillen, R., Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague, A. L., et al. ( 2007 ). Processes that promote and deplete the exosphere of Mercury. Space Science Reviews, 132 ( 2–4 ), 433 – 509. https://doi.org/10.1007/s11214-007-9232-0
dc.identifier.citedreferenceKillen, R. M. ( 2016 ). Pathways for energization of Ca in Mercury’s exosphere. Icarus, 268, 32 – 36. https://doi.org/10.1016/j.icarus.2015.12.035
dc.identifier.citedreferenceKillen, R. M., Potter, A. E., Vervack, R. J., Bradley, E. T., McClintock, W. E., Anderson, C. M., & Burger, M. H. ( 2010 ). Observations of metallic species in Mercury’s exosphere. Icarus, 209 ( 1 ), 75 – 87. https://doi.org/10.1016/j.icarus.2010.02.018
dc.identifier.citedreferenceLammer, H., Wurz, P., Patel, M. R., Killen, R. M., Kolb, C., Massetti, S., et al. ( 2003 ). The variability of Mercury’s exosphere by particle and radiation induced surface release processes. Icarus, 166 ( 2 ), 238 – 247. https://doi.org/10.1016/j.icarus.2003.08.012
dc.identifier.citedreferenceLavraud, B., Fedorov, A., Budnik, E., Grigoriev, A., Cargill, P., Dunlop, M., et al. ( 2004 ). Cluster survey of the high-altitude cusp properties: A three-year statistical study. Annales Geophysicae, 22 ( 8 ), 3009 – 3019. https://doi.org/10.5194/angeo-22-3009-2004
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.