Show simple item record

Genetic interaction between Scn8a and potassium channel genes Kcna1 and Kcnq2

dc.contributor.authorHill, Sophie F.
dc.contributor.authorZiobro, Julie M.
dc.contributor.authorJafar-Nejad, Paymaan
dc.contributor.authorRigo, Frank
dc.contributor.authorMeisler, Miriam H.
dc.date.accessioned2022-11-09T21:18:12Z
dc.date.available2023-11-09 16:18:11en
dc.date.available2022-11-09T21:18:12Z
dc.date.issued2022-10
dc.identifier.citationHill, Sophie F.; Ziobro, Julie M.; Jafar-Nejad, Paymaan ; Rigo, Frank; Meisler, Miriam H. (2022). "Genetic interaction between Scn8a and potassium channel genes Kcna1 and Kcnq2." Epilepsia (10): e125-e131.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/175091
dc.description.abstractVoltage-gated sodium and potassium channels regulate the initiation and termination of neuronal action potentials. Gain-of-function mutations of sodium channel Scn8a and loss-of-function mutations of potassium channels Kcna1 and Kcnq2 increase neuronal activity and lead to seizure disorders. We tested the hypothesis that reducing the expression of Scn8a would compensate for loss-of-function mutations of Kcna1 or Kcnq2. Scn8a expression was reduced by the administration of an antisense oligonucleotide (ASO). This treatment lengthened the survival of the Kcn1a and Kcnq2 mutants, and reduced the seizure frequency in the Kcnq2 mutant mice. These observations suggest that reduction of SCN8A may be therapeutic for genetic epilepsies resulting from mutations in these potassium channel genes.
dc.publisherUniversity of Washington
dc.publisherWiley Periodicals, Inc.
dc.subject.otherepilepsy
dc.subject.otherASO
dc.subject.otherpotassium channel
dc.subject.othersodium channel
dc.subject.othertherapy
dc.titleGenetic interaction between Scn8a and potassium channel genes Kcna1 and Kcnq2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175091/1/epi17374.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175091/2/epi17374_am.pdf
dc.identifier.doi10.1111/epi.17374
dc.identifier.sourceEpilepsia
dc.identifier.citedreferenceLauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, et al. Therapeutic potential of sodium channel blockers as a targeted therapy approach in KCNA1-associated episodic ataxia and a comprehensive review of the literature. Front Neurol. 2021; 12: 703970. https://doi.org/10.3389/FNEUR.2021.703970/FULL
dc.identifier.citedreferenceHuang CY, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci. 2018; 1420 ( 1 ): 46 – 61. https://doi.org/10.1111/nyas.13718
dc.identifier.citedreferenceBean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007; 8 ( 6 ): 451 – 65. https://doi.org/10.1038/nrn2148
dc.identifier.citedreferenceMiceli F, Soldovieri MV, Joshi N, Weckhuysen S, Cooper E, Taglialatela M. KCNQ2-Related disorders. In: Adam MP, Mirzaa GM, Pagon RA, editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 2018. https://www.ncbi.nlm.nih.gov/books/NBK32534/ Published online September 27, 2018.
dc.identifier.citedreferenceWeckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LRF, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012; 71 ( 1 ): 15 – 25. https://doi.org/10.1002/ana.22644
dc.identifier.citedreferenceMeisler MH, Hill SF, Yu W. Sodium channelopathies in neurodevelopmental disorders. Nat Rev Neurosci. 2021; 22 ( 3 ): 152 – 66. https://doi.org/10.1038/s41583-020-00418-4
dc.identifier.citedreferenceD’adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 channelopathies: pathophysiological mechanisms and therapeutic approaches. Int J Mol Sci. 2020; 21 ( 8 ): 2935. https://doi.org/10.3390/IJMS21082935
dc.identifier.citedreferenceLenk GM, Jafar-Nejad P, Hill SF, Huffman LD, Smolen CE, Wagnon JL, et al. Scn8a antisense oligonucleotide is protective in mouse models of Scn8a encephalopathy and dravet syndrome. Ann Neurol. 2020; 87 ( 3 ): 339 – 46. https://doi.org/10.1002/ana.25676
dc.identifier.citedreferenceColasante G, Qiu Y, Massimino L, di Berardino C, Cornford JH, Snowball A, et al. In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain. 2020; 143 ( 3 ): 891 – 905. https://doi.org/10.1093/brain/awaa045
dc.identifier.citedreferenceSnowball A, Chabrol E, Wykes RC, Shekh-Ahmad T, Cornford JH, Lieb A, et al. Epilepsy gene therapy using an engineered potassium channel. J Neurosci. 2019; 39 ( 16 ): 3159 – 69. https://doi.org/10.1523/JNEUROSCI.1143-18.2019
dc.identifier.citedreferenceSoh H, Pant R, LoTurco JJ, Tzingounis AV. Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability. J Neurosci. 2014; 34 ( 15 ): 5311 – 21. https://doi.org/10.1523/JNEUROSCI.3919-13.2014
dc.identifier.citedreferenceSmart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron. 1998; 20 ( 4 ): 809 – 19. https://doi.org/10.1016/s0896-6273(00)81018-1
dc.identifier.citedreferenceKim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce alzheimer-like cognitive deficits. J Vis Exp. 2016; 109: 53308. https://doi.org/10.3791/53308
dc.identifier.citedreferenceAiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain. 2021; 144 ( 9 ): 2863 – 78. https://doi.org/10.1093/BRAIN/AWAB141
dc.identifier.citedreferenceFenoglio-Simeone KA, Wilke JC, Milligan HL, Allen CN, Rho JM, Maganti RK. Ketogenic diet treatment abolishes seizure periodicity and improves diurnal rhythmicity in epileptic Kcna1-null mice. Epilepsia. 2009; 50 ( 9 ): 2027 – 34. https://doi.org/10.1111/J.1528-1167.2009.02163.X
dc.identifier.citedreferenceDu J, Vegh V, Reutens DC. Persistent sodium current blockers can suppress seizures caused by loss of low-threshold D-type potassium currents: Predictions from an in silico study of Kv1 channel disorders. Epilepsia Open. 2020; 5 ( 1 ): 86 – 96. https://doi.org/10.1002/EPI4.12379
dc.identifier.citedreferenceNiday Z, Hawkins VE, Soh H, Mulkey DK, Tsingounis AJ. Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons. Neurosci. 2017; 37 ( 3 ): 576 – 86.
dc.identifier.citedreferenceMeisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol. 2010; 588 ( Pt 11 ): 1841 – 8. https://doi.org/10.1113/JPHYSIOL.2010.188482
dc.identifier.citedreferenceGlasscock E, Qian J, Yoo JW, Noebels JL. Masking epilepsy by combining two epilepsy genes. Nat Neurosci. 2007; 10 ( 12 ): 1554 – 8. https://doi.org/10.1038/nn1999
dc.identifier.citedreferenceCalhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia. 2017; 58 ( 8 ): e111 – 5. https://doi.org/10.1111/EPI.13811
dc.identifier.citedreferenceMishra V, Karumuri BK, Gautier NM, Liu R, Hutson TN, Vanhoof-Villalba SL, et al. Scn2a deletion improves survival and brain–heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum Mol Genet. 2017; 26 ( 11 ): 2091 – 103. https://doi.org/10.1093/HMG/DDX104
dc.identifier.citedreferenceKearney JA, Yang Y, Beyer B, Bergren SK, Claes L, DeJonghe P, et al. Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet. 2006; 15 ( 6 ): 1043 – 8. https://doi.org/10.1093/HMG/DDL019
dc.identifier.citedreferenceJohnson J, Focken T, Khakh K, Tari PK, Dube C, Goodchild SJ, et al. NBI-921352, a first-in-class, Na V 1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. Elife. 2022; 11: e72468. https://doi.org/10.7554/ELIFE.72468
dc.identifier.citedreferenceHammer MF, Pan Y, Cumbay M, Pendziwiat M, Afawi Z, Goldberg-Stern H, et al. Whole exome sequencing and co-expression analysis identify an SCN1A variant that modifies pathogenicity in a family with genetic epilepys and febrile seizures plus. Epilepsia. 2022. Online ahead of print. https://doi.org/10.1111/epi.17296
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.