Show simple item record

Fluid-Induced Fault Reactivation Due To Brucite + Antigorite Dehydration Triggered the Mw7.1 September 19th Puebla-Morelos (Mexico) Intermediate-Depth Earthquake

dc.contributor.authorGutiérrez-Aguilar, F.
dc.contributor.authorHernández-Uribe, D.
dc.contributor.authorHolder, R. M.
dc.contributor.authorCondit, C. B.
dc.date.accessioned2022-11-09T21:18:39Z
dc.date.available2023-11-09 16:18:36en
dc.date.available2022-11-09T21:18:39Z
dc.date.issued2022-10-28
dc.identifier.citationGutiérrez-Aguilar, F. ; Hernández-Uribe, D. ; Holder, R. M.; Condit, C. B. (2022). "Fluid- Induced Fault Reactivation Due To Brucite + Antigorite Dehydration Triggered the Mw7.1 September 19th Puebla- Morelos (Mexico) Intermediate- Depth Earthquake." Geophysical Research Letters 49(20): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/175099
dc.description.abstractThe Puebla-Morelos (Mexico) 2017 earthquake nucleated ∼250 km inland from the trench within the Cocos oceanic plate mantle. Here, we argue that the Puebla-Morelos (Mexico) 2017 earthquake resulted from changes in effective stress due to the reaction brucite + antigorite = olivine + H2O leading to the reactivation of pre-existing seafloor faults. Fluid release (∼185 kg of H2O per m3 of subducted hydrated harzburgite) and volume increase (ΔVr solid+fluid = ∼0.8%) likely occur along subducted seafloor-inherited faults. The amount of H2O released, and magnitude of volume change depends on the degree of faults hydration; only highly hydrated (>40% of hydration) faults will stabilize brucite and experience this reaction at depth. The brucite + antigorite dehydration reaction may be key for intermediate seismicity worldwide.Plain Language SummaryThe Puebla-Morelos (central Mexico) Mw7.1 earthquake occurred in an uncommon locality in Mexico compared to most of the catastrophic earthquakes that have occurred in this part of the world—it nucleated ∼250 km inland, almost below Mexico City. In this paper, we explore the role of mineralogical changes occurring in the Cocos tectonic plate, which is currently descending below the North America plate. Our model tracked the changes in the minerals within the rocks and show that the earthquake might have been triggered by the physical changes associated with the mineral reaction: brucite + antigorite = olivine + H2O. We suggest that this mineral reaction primarily occurred along faults in the subducting oceanic floor along which the mantle lithosphere was hydrated prior to subduction. The brucite + antigorite dehydration reaction may be key for intermediate seismicity worldwide.Key PointsThe dehydration of antigorite + brucite has a positive total volume change and leads to fluid-induced fault reactivationWe hypothesize that fluid-induced fault reactivation triggered the Puebla-Morelos 2017 earthquakeThe antigorite + brucite reaction only happens in highly hydrated regions of the upper lithospheric mantle
dc.publisherWiley Periodicals, Inc.
dc.publisherInstituto de Geofísica, Universidad Nacional Autónoma de México
dc.subject.otherserpentinite
dc.subject.otherseismicity
dc.subject.otherphase equilibria
dc.subject.othermetamorphism
dc.subject.otherbrucite
dc.subject.otherdehydration
dc.titleFluid-Induced Fault Reactivation Due To Brucite + Antigorite Dehydration Triggered the Mw7.1 September 19th Puebla-Morelos (Mexico) Intermediate-Depth Earthquake
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175099/1/2022GL100814-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175099/2/grl64994_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175099/3/grl64994.pdf
dc.identifier.doi10.1029/2022GL100814
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. ( 2008 ). Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. Geophysical Research Letters, 35 ( 18 ), L18303. https://doi.org/10.1029/2008gl035127
dc.identifier.citedreferenceOgawa, M. ( 1987 ). Shear instability in a viscoelastic material as the cause of deep focus earthquakes. Journal of Geophysical Research, 92 ( B13 ), 13801 – 13810. https://doi.org/10.1029/jb092ib13p13801
dc.identifier.citedreferencePadrón-Navarta, J. A., Sánchez-Vizcaíno, V. L., Hermann, J., Connolly, J. A., Garrido, C. J., Gómez-Pugnaire, M. T., & Marchesi, C. ( 2013 ). Tschermak′s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178, 186 – 196. https://doi.org/10.1016/j.lithos.2013.02.001
dc.identifier.citedreferenceParkinson, I. J., & Pearce, J. A. ( 1998 ). Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39 ( 9 ), 1577 – 1618. https://doi.org/10.1093/petroj/39.9.1577
dc.identifier.citedreferenceParsons, T., Trehu, A. M., Luetgert, J. H., Miller, K., Kilbride, F., Wells, R. E., et al. ( 1998 ). A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin. Geology, 26 ( 3 ), 199 – 202. https://doi.org/10.1130/0091-7613(1998)026<0199:anvitc>2.3.co;2
dc.identifier.citedreferencePeacock, S. M. ( 2001 ). Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29 ( 4 ), 299 – 302. https://doi.org/10.1130/0091-7613(2001)029<0299:atlpod>2.0.co;2
dc.identifier.citedreferencePeacock, S. M. ( 2009 ). Thermal and metamorphic environment of subduction zone episodic tremor and slip. Journal of Geophysical Research, 114, B00A07. https://doi.org/10.1029/2008jb005978
dc.identifier.citedreferencePlümper, O., John, T., Podladchikov, Y. Y., Vrijmoed, J. C., & Scambelluri, M. ( 2017 ). Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10 ( 2 ), 150 – 156. https://doi.org/10.1038/ngeo2865
dc.identifier.citedreferencePowell, R., & Holland, T. J. B. ( 1999 ). Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas. American Mineralogy, 84 ( 1–2 ), 1 – 14. https://doi.org/10.2138/am-1999-1-201
dc.identifier.citedreferencePowell, R., & Holland, T. J. B. ( 2008 ). On thermobarometry. Journal of Metamorphic Geology, 26 ( 2 ), 155 – 179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
dc.identifier.citedreferencePrieto, G. A., Florez, M., Barrett, S. A., Beroza, G. C., Pedraza, P., Blanco, J. F., & Poveda, E. ( 2013 ). Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophysical Research Letters, 40 ( 23 ), 6064 – 6068. https://doi.org/10.1002/2013gl058109
dc.identifier.citedreferencePrigent, C., Warren, J. M., Kohli, A. H., & Teyssier, C. ( 2020 ). Fracture-mediated deep seawater flow and mantle hydration on oceanic transform faults. Earth and Planetary Science Letters, 532, 115988. https://doi.org/10.1016/j.epsl.2019.115988
dc.identifier.citedreferenceRaleigh, C. B., & Paterson, M. S. ( 1965 ). Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70 ( 16 ), 3965 – 3985. https://doi.org/10.1029/jz070i016p03965
dc.identifier.citedreferenceRanero, C. R., Phipps Morgan, J., McIntosh, K., & Reichert, C. ( 2003 ). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425 ( 6956 ), 367 – 373. https://doi.org/10.1038/nature01961
dc.identifier.citedreferenceRodríguez-Pérez, Q., & Zuñiga, F. R. ( 2018 ). Imaging b-value depth variations within the Cocos and Rivera plates at the Mexican subduction zone. Tectonophysics, 734, 33 – 43. https://doi.org/10.1016/j.tecto.2018.03.019
dc.identifier.citedreferenceSandiford, D., Moresi, L., Sandiford, M., & Yang, T. ( 2019 ). Geometric controls on flat slab seismicity. Earth and Planetary Science Letters, 527, 115787. https://doi.org/10.1016/j.epsl.2019.115787
dc.identifier.citedreferenceScholz, C. H. ( 2015 ). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42 ( 5 ), 1399 – 1402. https://doi.org/10.1002/2014gl062863
dc.identifier.citedreferenceShillington, D. J., Bécel, A., Nedimović, M. R., Kuehn, H., Webb, S. C., Abers, G. A., et al. ( 2015 ). Link between plate fabric, hydration, and subduction zone seismicity in Alaska. Nature Geoscience, 8 ( 12 ), 961 – 964. https://doi.org/10.1038/ngeo2586
dc.identifier.citedreferenceSingh, C., & Singh, S. ( 2015 ). Imaging b-value variation beneath the Pamir–Hindu Kush region. Bulletin of the Seismological Society of America, 105 ( 2A ), 808 – 815. https://doi.org/10.1785/0120140112
dc.identifier.citedreferenceSingh, S. K., Ordaz, M., Pacheco, J. F., Quaas, R., Alcantara, L., Alcocer, S., et al. ( 1999 ). A preliminary report on the Tehuacan, Mexico earthquake of June 15, 1999 (Mw=7.0). Seismological Research Letters, 70 ( 5 ), 489 – 504. https://doi.org/10.1785/gssrl.70.5.489
dc.identifier.citedreferenceSSN. ( 2020 ). Servicio Sismológico Nacional. Instituto de Geofísica, Universidad Nacional Autónoma de México. Retrieved from: https://ssn.unam.mx
dc.identifier.citedreferenceTakahashi, M., Uehara, S. I., Mizoguchi, K., Shimizu, I., Okazaki, K., & Masuda, K. ( 2011 ). On the transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under high-temperature conditions. Journal of Geophysical Research, 116, B10405. https://doi.org/10.1029/2010jb008062
dc.identifier.citedreferenceThielmann, M. ( 2018 ). Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: Impact of complex rheologies. Tectonophysics, 746, 611 – 623. https://doi.org/10.1016/j.tecto.2017.08.038
dc.identifier.citedreferenceWhite, R. W., Powell, R., & Clarke, G. L. ( 2002 ). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, Central Australia: Constraints from mineral equilibria calculations in the system. Journal of Metamorphic Geology, 20 ( 1 ), 41 – 55. https://doi.org/10.1046/j.0263-4929.2001.00349.x
dc.identifier.citedreferenceWhite, R. W., Powell, R., & Holland, T. J. B. ( 2007 ). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25 ( 5 ), 511 – 527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
dc.identifier.citedreferenceYamasaki, T., & Seno, T. ( 2003 ). Double seismic zone and dehydration embrittlement of the subducting slab. Journal of Geophysical Research: Solid Earth, 108 ( B4 ), 2212. https://doi.org/10.1029/2002jb001918
dc.identifier.citedreferenceAbers, G. A., Nakajima, J., van Keken, P. E., Kita, S., & Hacker, B. R. ( 2013 ). Thermal–petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters, 369, 178 – 187. https://doi.org/10.1016/j.epsl.2013.03.022
dc.identifier.citedreferenceAllen, D. E., & Seyfried, W. E., Jr. ( 2003 ). Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 C, 500 bars. Geochimica et Cosmochimica Acta, 67 ( 8 ), 1531 – 1542. https://doi.org/10.1016/s0016-7037(02)01173-0
dc.identifier.citedreferenceAngiboust, S., & Raimondo, T. ( 2022 ). Permeability of subducted oceanic crust revealed by eclogite-facies vugs. Geology, 50 ( 8 ), 964 – 968. https://doi.org/10.1130/g50066.1
dc.identifier.citedreferenceBach, W., Garrido, C. J., Paulick, H., Harvey, J., & Rosner, M. ( 2004 ). Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15 N. Geochemistry, Geophysics, Geosystems, 5 ( 9 ), Q09F26. https://doi.org/10.1029/2004gc000744
dc.identifier.citedreferenceBloch, W., John, T., Kummerow, J., Salazar, P., Krüger, O. S., & Shapiro, S. A. ( 2018 ). Watching dehydration: Seismic indication for transient fluid pathways in the oceanic mantle of the subducting Nazca slab. Geochemistry, Geophysics, Geosystems, 19 ( 9 ), 3189 – 3207. https://doi.org/10.1029/2018gc007703
dc.identifier.citedreferenceBoschi, C., Früh-Green, G. L., Delacour, A., Karson, J. A., & Kelley, D. S. ( 2006 ). Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30 N). Geochemistry, Geophysics, Geosystems, 7 ( 1 ), Q01004. https://doi.org/10.1029/2005gc001074
dc.identifier.citedreferenceBrocher, T. M., Fuis, G. S., Fisher, M. A., Plafker, G., Moses, M. J., Taber, J. J., & Christensen, N. I. ( 1994 ). Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data. Journal of Geophysical Research, 99 ( B6 ), 11663 – 11685.
dc.identifier.citedreferenceConnolly, J. A. D. ( 1997 ). Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. Journal of Geophysical Research, 102 ( B8 ), 18149 – 18173. https://doi.org/10.1029/97jb00731
dc.identifier.citedreferenceConnolly, J. A. D. ( 2009 ). The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10 ( 10 ), Q10014. https://doi.org/10.1029/2009gc002540
dc.identifier.citedreferenceCruz-Atienza, V. M., Tago, J., Villafuerte, C., Wei, M., Garza-Girón, R., Dominguez, L. A., et al. ( 2021 ). Short-term interaction between silent and devastating earthquakes in Mexico. Nature Communications, 12 ( 1 ), 2171. https://doi.org/10.1038/s41467-021-22326-6
dc.identifier.citedreferenceDeschamps, F., Godar, M., Guillot, S., & Hattori, K. ( 2013 ). Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96 – 127. https://doi.org/10.1016/j.lithos.2013.05.019
dc.identifier.citedreferenceDiener, J. F. A., & Powell, R. ( 2012 ). Revised activity-composition models for clinopyroxene and amphibole. Journal of Metamorphic Geology, 30 ( 2 ), 131 – 142. https://doi.org/10.1111/j.1525-1314.2011.00959.x
dc.identifier.citedreferenceDobson, D. P., Meredith, P. G., & Boon, S. A. ( 2002 ). Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298 ( 5597 ), 1407 – 1410. https://doi.org/10.1126/science.1075390
dc.identifier.citedreferenceDunkel, K. G., Austrheim, H., Renard, F., Cordonnier, B., & Jamtveit, B. ( 2017 ). Localized slip controlled by dehydration embrittlement of partly serpentinized dunites, Leka Ophiolite Complex, Norway. Earth and Planetary Science Letters, 463, 277 – 285. https://doi.org/10.1016/j.epsl.2017.01.047
dc.identifier.citedreferenceFerrand, T. P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc, J., et al. ( 2017 ). Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 8 ( 1 ), 15247. https://doi.org/10.1038/ncomms15247
dc.identifier.citedreferenceFodor, R. V., & Galar, P. A. ( 1997 ). View into the subsurface of Mauna Kea volcano, Hawaii: Crystallization processes interpreted through the petrology and petrography of gabbroic and ultramafic xenoliths. Journal of Petrology, 38 ( 5 ), 581 – 624. https://doi.org/10.1093/petroj/38.5.581
dc.identifier.citedreferenceGreen, H. W., & Houston, H. ( 1995 ). The mechanics of deep earthquakes. Annual Review of Earth and Planetary Sciences, 23 ( 1 ), 169 – 213. https://doi.org/10.1146/annurev.ea.23.050195.001125
dc.identifier.citedreferenceGreen, H. W., II, Shi, F., Bozhilov, K., Xia, G., & Reches, A. Z. ( 2015 ). Phase transformation and nanometric flow cause extreme weakening during fault slip. Nature Geoscience, 8 ( 6 ), 484 – 489. https://doi.org/10.1038/ngeo2436
dc.identifier.citedreferenceGutscher, M. A., Spakman, W., Bijwaard, H., & Engdahl, E. R. ( 2000 ). Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19 ( 5 ), 814 – 833. https://doi.org/10.1029/1999tc001152
dc.identifier.citedreferenceHacker, B. R. ( 2008 ). H 2 O subduction beyond arcs. Geochemistry, Geophysics, Geosystems, 9 ( 3 ). https://doi.org/10.1029/2007gc001707
dc.identifier.citedreferenceHacker, B. R., Peacock, S. M., Abers, G. A., & Holloway, S. D. ( 2003 ). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research: Solid Earth, 108, 203. https://doi.org/10.1029/2001jb001129
dc.identifier.citedreferenceHermann, J., Müntener, O., & Scambelluri, M. ( 2000 ). The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327 ( 3–4 ), 225 – 238. https://doi.org/10.1016/s0040-1951(00)00171-2
dc.identifier.citedreferenceHernández-Uribe, D., Palin, R. M., Cone, K. A., & Cao, W. ( 2020 ). Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt. Journal of Petrology, 61 ( 9 ), egaa086. https://doi.org/10.1093/petrology/egaa086
dc.identifier.citedreferenceHolland, T. J. B., Baker, J., & Powell, R. ( 1998 ). Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10 ( 3 ), 395 – 406. https://doi.org/10.1127/ejm/10/3/0395
dc.identifier.citedreferenceHolland, T. J. B., & Powell, R. ( 1998 ). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16 ( 3 ), 309 – 343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
dc.identifier.citedreferenceHolland, T. J. B., & Powell, R. ( 2004 ). Activity–composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145 ( 4 ), 492 – 501. https://doi.org/10.1007/s00410-003-0464-z
dc.identifier.citedreferenceIncel, S., Hilairet, N., Labrousse, L., John, T., Deldicque, D., Ferrand, T. P., et al. ( 2017 ). Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist. Earth and Planetary Science Letters, 459, 320 – 331. https://doi.org/10.1016/j.epsl.2016.11.047
dc.identifier.citedreferenceIvandic, M., Grevemeyer, I., Bialas, J., & Petersen, C. J. ( 2010 ). Serpentinization in the trench-outer rise region offshore of Nicaragua: Constraints from seismic refraction and wide-angle data. Geophysical Journal International, 180 ( 3 ), 1253 – 1264. https://doi.org/10.1111/j.1365-246x.2009.04474.x
dc.identifier.citedreferenceJohn, T., Medvedev, S., Rüpke, L. H., Andersen, T. B., Podladchikov, Y. Y., & Austrheim, H. ( 2009 ). Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nature Geoscience, 2 ( 2 ), 137 – 140. https://doi.org/10.1038/ngeo419
dc.identifier.citedreferenceJung, H., Fei, Y., Silver, P. G., & Green, H. W. II. ( 2009 ). Frictional sliding in serpentine at very high pressure. Earth and Planetary Science Letters, 277 ( 1–2 ), 273 – 279. https://doi.org/10.1016/j.epsl.2008.10.019
dc.identifier.citedreferenceJung, H., & Green, H. W. ( 2004 ). Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review, 46 ( 12 ), 1089 – 1102. https://doi.org/10.2747/0020-6814.46.12.1089
dc.identifier.citedreferenceKelemen, P. B., & Hirth, G. ( 2007 ). A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 446 ( 7137 ), 787 – 790. https://doi.org/10.1038/nature05717
dc.identifier.citedreferenceKempf, E. D., Hermann, J., Reusser, E., Baumgartner, L. P., & Lanari, P. ( 2020 ). The role of the antigorite plus brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland). Swiss Journal of Geosciences, 113 ( 1 ), 16. https://doi.org/10.1186/s00015-020-00368-0
dc.identifier.citedreferenceKuno, H. ( 1969 ). Mafic and ultramafic nodules in basaltic rocks of Hawaii. Geological Society of America Memoir, 115, 189 – 234.
dc.identifier.citedreferenceManea, V. C., & Manea, M. ( 2011 ). Flat-slab thermal structure and evolution beneath Central Mexico. Pure and Applied Geophysics, 168 ( 8–9 ), 1475 – 1487. https://doi.org/10.1007/s00024-010-0207-9
dc.identifier.citedreferenceMayoral, J. M., Hutchinson, T. C., & Franke, K. W. ( 2017 ). Geotechnical engineering reconnaissance of the 19 September 2017 Mw 7.1 Puebla-Mexico City earthquake, GEER association report no. GEER-055A.
dc.identifier.citedreferenceMelgar, D., Pérez-Campos, X., Ramirez-Guzman, L., Spica, Z., Espíndola, V. H., Hammond, W. C., & Cabral-Cano, E. ( 2018 ). Bend faulting at the edge of a flat slab: The 2017 Mw 7.1 Puebla-Morelos, Mexico earthquake. Geophysical Research Letters, 45 ( 6 ), 2633 – 2641. https://doi.org/10.1002/2017gl076895
dc.identifier.citedreferenceMirwald, A., Cruz-Atienza, V. M., Díaz-Mojica, J., Iglesias, A., Singh, S. K., Villafuerte, C., & Tago, J. ( 2019 ). The 19 September 2017 (Mw 7.1) intermediate-depth Mexican earthquake: A slow and energetically inefficient deadly shock. Geophysical Research Letters, 46 ( 4 ), 2054 – 2064. https://doi.org/10.1029/2018gl080904
dc.identifier.citedreferenceMoody, J. B. ( 1976 ). Serpentinization: A review. Lithos, 9 ( 2 ), 125 – 138. https://doi.org/10.1016/0024-4937(76)90030-x
dc.identifier.citedreferenceMüller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. ( 2008 ). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9 ( 4 ), Q04006. https://doi.org/10.1029/2007gc001743
dc.identifier.citedreferenceNaif, S., Key, K., Constable, S., & Evans, R. L. ( 2015 ). Water-rich bending faults at the Middle America trench. Geochemistry, Geophysics, Geosystems, 16 ( 8 ), 2582 – 2597. https://doi.org/10.1002/2015gc005927
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.