Show simple item record

Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations

dc.contributor.authorNims, Christine
dc.contributor.authorJohnson, Jena E.
dc.date.accessioned2022-11-09T21:18:54Z
dc.date.available2023-12-09 16:18:49en
dc.date.available2022-11-09T21:18:54Z
dc.date.issued2022-11
dc.identifier.citationNims, Christine; Johnson, Jena E. (2022). "Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations." Geobiology (6): 743-763.
dc.identifier.issn1472-4677
dc.identifier.issn1472-4669
dc.identifier.urihttps://hdl.handle.net/2027.42/175102
dc.description.abstractMarine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, Shewanella putrefaciens CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbanded iron formations
dc.subject.otherbiomineralization
dc.subject.otherdissimilatory iron reduction
dc.subject.othergreenalite
dc.titleExploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175102/1/gbi12523.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175102/2/gbi12523_am.pdf
dc.identifier.doi10.1111/gbi.12523
dc.identifier.sourceGeobiology
dc.identifier.citedreferenceRasmussen, B., Krapež, B., & Muhling, J. R. ( 2015 ). Seafloor silicification and hardground development during deposition of 2.5 Ga banded iron formations. Geology, 43 ( 3 ), 235 – 238. https://doi.org/10.1130/G36363.1
dc.identifier.citedreferenceSchwertmann, U., & Thalmann, H. ( 1976 ). The Influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl 2 solutions. Clay Minerals, 11 ( 3 ), 189 – 200. https://doi.org/10.1180/claymin.1976.011.3.02
dc.identifier.citedreferenceSergent, A. S., Jorand, F., & Hanna, K. ( 2011 ). Effects of Si-bearing minerals on the nature of secondary iron mineral products from lepidocrocite bioreduction. Chemical Geology, 289 ( 1–2 ), 86 – 97. https://doi.org/10.1016/j.chemgeo.2011.07.016
dc.identifier.citedreferenceSiever, R. ( 1992 ). The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56 ( 8 ), 3265 – 3272. https://doi.org/10.1016/0016-7037(92)90303-z
dc.identifier.citedreferenceSklute, E. C., Kashyap, S., Dyar, M. D., Holden, J. F., Tague, T., Wang, P., & Jaret, S. J. ( 2018 ). Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides. Physics and Chemistry of Minerals, 45 ( 1 ), 1 – 26. https://doi.org/10.1007/s00269-017-0897-y
dc.identifier.citedreferenceStookey, L. L. ( 1970 ). Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry, 42 ( 7 ), 779 – 781. https://doi.org/10.1021/ac60289a016
dc.identifier.citedreferenceSun, S., Konhauser, K. O., Kappler, A., & Li, Y. L. ( 2015 ). Primary hematite in Neoarchean to Paleoproterozoic oceans. Bulletin of the Geological Society of America, 127 ( 5–6 ), 850 – 861. https://doi.org/10.1130/B31122.1
dc.identifier.citedreferenceSun, W., Jayaraman, S., Chen, W., Persson, K. A., & Ceder, G. ( 2015 ). Correction: Nucleation of metastable aragonite CaCO3in seawater (Proceedings of the National Academy of Sciences of The United States of America (2015), 112:3199–3204 (DOI: 10.1073/pnas.1423898112)). Proceedings of the National Academy of Sciences of the United States of America, 112 ( 20 ), E2735. https://doi.org/10.1073/pnas.1506100112
dc.identifier.citedreferenceSwedlund, P., & Webster, J. ( 1999 ). Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Research, 33 ( 16 ), 3413 – 3422. https://doi.org/10.1016/S0043-1354(99)00055-X
dc.identifier.citedreferenceTosca, N. J., Guggenheim, S., & Pufahl, P. K. ( 2016 ). An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. Bulletin of the Geological Society of America, 128 ( 3–4 ), 511 – 530. https://doi.org/10.1130/B31339.1
dc.identifier.citedreferenceTosca, N. J., Jiang, C. Z., Rasmussen, B., & Muhling, J. ( 2019 ). Products of the iron cycle on the early Earth. Free Radical Biology and Medicine, 140 ( April ), 138 – 153. https://doi.org/10.1016/j.freeradbiomed.2019.05.005
dc.identifier.citedreferenceTrendall, A. F. ( 2002 ). The significance of iron-formation in the precambrian stratigraphic record. In W. Altermann & P. L. Corcoran (Eds.), Precambrian sedimentary environments (pp. 33 – 66 ). International Association of Sedimentologists Special Publications.
dc.identifier.citedreferenceViollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. ( 2000 ). The Ferrozine method revisted. Applied Geochemistry, 15, 785 – 790.
dc.identifier.citedreferenceVirdis, B., Millo, D., Donose, B. C., & Batstone, D. J. ( 2014 ). Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: A confocal resonance raman microscopy study. PLoS One, 9 ( 2 ), e89918. https://doi.org/10.1371/journal.pone.0089918
dc.identifier.citedreferenceWacey, D., Saunders, M., Roberts, M., Menon, S., Green, L., Kong, C., Culwick, T., Strother, P., & Brasier, M. D. ( 2014 ). Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes. Scientific Reports, 4, 1 – 12. https://doi.org/10.1038/srep05841
dc.identifier.citedreferenceWalker, J. C. G. ( 1984 ). Suboxic diagenesis in banded iron formations. Nature, 309 ( 5966 ), 340 – 342. https://doi.org/10.1038/309340a0
dc.identifier.citedreferenceWiddel, F., Kohring, G.-W., & Mayer, F. ( 1983 ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Archives of Microbiology, 134 ( 4 ), 286 – 294. https://doi.org/10.1007/bf00407804
dc.identifier.citedreferenceWolf, M. W., Rizzolo, K., Elliott, S. J., & Lehnert, N. ( 2018 ). Resonance Raman, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic investigation of diheme cytochrome c peroxidases from Nitrosomonas europaea and Shewanella oneidensis. Biochemistry, 57 ( 45 ), 6416 – 6433. https://doi.org/10.1021/acs.biochem.8b00732
dc.identifier.citedreferenceWu, L., Beard, B. L., Roden, E. E., & Johnson, C. M. ( 2009 ). Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite. Geochimica et Cosmochimica Acta, 73 ( 19 ), 5584 – 5599. https://doi.org/10.1016/j.gca.2009.06.026
dc.identifier.citedreferenceZachara, J. M., Kukkadapu, R. K., Fredrickson, J. K., Gorby, Y. A., & Smith, S. C. ( 2002 ). Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal, 19 ( 2 ), 179 – 207. https://doi.org/10.1080/01490450252864271
dc.identifier.citedreferenceZegeye, A., Mustin, C., & Jorand, F. ( 2010 ). Bacterial and iron oxide aggregates mediate secondary iron mineral formation: Green rust versus magnetite. Geobiology, 8 ( 3 ), 209 – 222. https://doi.org/10.1111/j.1472-4669.2010.00238.x
dc.identifier.citedreferenceZeller, E. J., & Wray, J. ( 1956 ). Factors influencing precipitation of calcium carbonate. AAPG Bulletin, 40 ( 1 ), 140 – 152. https://doi.org/10.1306/5ceae30a-16bb-11d7-8645000102c1865d
dc.identifier.citedreferenceZeng, Z., & Tice, M. M. ( 2014 ). Promotion and nucleation of carbonate precipitation during microbial iron reduction. Geobiology, 12 ( 4 ), 362 – 371. https://doi.org/10.1111/gbi.12090
dc.identifier.citedreferenceAnderson, P. R., & Benjamin, M. M. ( 1985 ). Effects of silicon on the crystallization and adsorption properties of ferric oxides. Environmental Science and Technology, 19 ( 11 ), 1048 – 1053. https://doi.org/10.1021/es00141a004
dc.identifier.citedreferenceBae, S., & Lee, W. ( 2013 ). Biotransformation of lepidocrocite in the presence of quinones and flavins. Geochimica et Cosmochimica Acta, 114, 144 – 155. https://doi.org/10.1016/j.gca.2013.03.041
dc.identifier.citedreferenceBalch, W. E., & Wolfe, R. S. ( 1976 ). New approach to the cultivation of methanogenic bacteria: 2 mercaptoethanesulfonic acid (HS CoM) dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Applied and Environmental Microbiology, 32 ( 6 ), 781 – 791. https://doi.org/10.1128/aem.32.6.781-791.1976
dc.identifier.citedreferenceBaur, M. E., Hayes, J. M., Studley, S. A., & Walter, M. R. ( 1985 ). Millimeter-scale variations of stable isotope abundances in carbonates from Banded Iron-Formations in the Hamersley Group of Western Australia. Economic Geology, 80 ( 2 ), 270 – 282. https://doi.org/10.2113/gsecongeo.80.2.270
dc.identifier.citedreferenceBecker, R. H.,& Clayton, N. R. ( 1972 ). Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia. Geochimica et Cosmochimica Acta, 36 ( 5 ), 577 – 595. https://doi.org/10.1016/0016-7037(72)90077-4
dc.identifier.citedreferenceBekker, A., Krapež, B., Slack, J. F., Planavsky, N., Hofmann, A., Konhauser, K. O., & Rouxel, O. J. ( 2010 ). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes-a reply. Economic Geology, 107 ( 2 ), 379 – 380. https://doi.org/10.2113/econgeo.107.2.379
dc.identifier.citedreferenceBekker, A., Planavsky, N. J., Krapež, B., Rasmussen, B., Hofmann, A., Slack, J. F., Rouxel, O., & Konhauser, K. O. ( 2014 ). Iron formations: Their origins and implications for ancient seawater chemistry. In Treatise on geochemistry (Vol. 9, 2nd ed., pp. 561 – 628 ). Elsevier.
dc.identifier.citedreferenceBergmann, K. D., Grotzinger, J. P., & Fischer, W. W. ( 2013 ). Biological influences on seafloor carbonate precipitation. Palaios, 28 ( 2 ), 99 – 115. https://doi.org/10.2110/palo.2012.p12-088r
dc.identifier.citedreferenceBerner, R. A. ( 1975 ). The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta, 39, 489 – 504.
dc.identifier.citedreferenceBeukes, N. J., Mukhopadhyay, J., & Gutzmer, J. ( 2008 ). Genesis of high-grade iron ores of the Archean Iron Ore Group around Noamundi, India. Economic Geology, 103 ( 2 ), 365 – 386. https://doi.org/10.2113/gsecongeo.103.2.365
dc.identifier.citedreferenceBiffinger, J. C., Pietron, J., Bretschger, O., Nadeau, L. J., Johnson, G. R., Williams, C. C., Nealson, K. H., & Ringeisen, B. R. ( 2008 ). The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors and Bioelectronics, 24 ( 4 ), 900 – 905. https://doi.org/10.1016/j.bios.2008.07.034
dc.identifier.citedreferenceBusenberg, E., & Plummer, L. N. ( 1986 ). A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. US Geological Survey Bulletin, 1578, 139 – 168.
dc.identifier.citedreferenceCismasu, A. C., Levard, C., Michel, F. M., & Brown, G. E. ( 2013 ). Properties of impurity-bearing ferrihydrite II: Insights into the surface structure and composition of pure, Al- and Si-bearing ferrihydrite from Zn(II) sorption experiments and Zn K-edge X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 119, 46 – 60. https://doi.org/10.1016/j.gca.2013.05.040
dc.identifier.citedreferenceCraddock, P. R., & Dauphas, N. ( 2011 ). Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth and Planetary Science Letters, 303 ( 1–2 ), 121 – 132. https://doi.org/10.1016/j.epsl.2010.12.045
dc.identifier.citedreferenceDavis, K. J., Dove, P. M., & De Yoreo, J. J. ( 2000 ). The role of Mg 2+ as an impurity in calcite growth. Science, 290 ( 5494 ), 1134 – 1137. https://doi.org/10.1126/science.290.5494.1134
dc.identifier.citedreferenceDi Lorenzo, F., Burgos-Cara, A., Ruiz-Agudo, E., Putnis, C. V., & Prieto, M. ( 2017 ). Effect of ferrous iron on the nucleation and growth of CaCO 3 in slightly basic aqueous solutions. CrystEngComm, 19 ( 3 ), 447 – 460. https://doi.org/10.1039/c6ce02290a
dc.identifier.citedreferenceDong, H., Jaisi, D. P., Kim, J., & Zhang, G. ( 2009 ). Microbe-clay mineral interactions. American Mineralogist, 94 ( 11–12 ), 1505 – 1519. https://doi.org/10.2138/am.2009.3246
dc.identifier.citedreferenceDromgoole, E. L., & Walter, L. M. ( 1990 ). Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry. Chemical Geology, 81 ( 4 ), 311 – 336. https://doi.org/10.1016/0009-2541(90)90053-A
dc.identifier.citedreferenceEtique, M., Jorand, F. P. A., & Ruby, C. ( 2016 ). Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens. Geobiology, 14 ( 3 ), 237 – 254. https://doi.org/10.1111/gbi.12170
dc.identifier.citedreferenceFarquhar, J., Nanping, W. U., Canfield, D. E., & Oduro, H. ( 2010 ). Connections between sulfur cycle evolution, sulfur isotopes, sediments and base metal sulfide deposits. Economic Geology, 105 ( 3 ), 509 – 533. https://doi.org/10.2113/gsecongeo.105.3.509
dc.identifier.citedreferenceFischer, W. W., & Knoll, A. H. ( 2009 ). An iron shuttle for deepwater silica in late Archean and early Paleoproterozoic iron formation. Bulletin of the Geological Society of America, 121 ( 1–2 ), 222 – 235. https://doi.org/10.1130/B26328.1
dc.identifier.citedreferenceFrankel, G. S., Vienna, J. D., Lian, J., Scully, J. R., Gin, S., Ryan, J. V., Wang, J., Kim, S. H., Windl, W., & Du, J. ( 2018 ). A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. NPJ Materials Degradation, 2 ( 1 ), 15. https://doi.org/10.1038/s41529-018-0037-2
dc.identifier.citedreferenceFredrickson, J. K., Kota, S., Kukkadapu, R. K., Liu, C., & Zachara, J. M. ( 2003 ). Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Biodegradation, 14 ( 2 ), 91 – 103. https://doi.org/10.1023/A:1024001207574
dc.identifier.citedreferenceFredrickson, J. K., Zachara, J. M., Kukkadapu, R. K., Gorby, Y. A., Smith, S. C., & Brown, C. F. ( 2001 ). Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environmental Science and Technology, 35 ( 4 ), 703 – 712. https://doi.org/10.1021/es001500v
dc.identifier.citedreferenceFredrickson, J. K., Zachara, J. M., Kennedy, D. W., Dong, H., Onstott, T. C., Hinman, N. W., & Li, S. M. ( 1998 ). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62 ( 19–20 ), 3239 – 3257. https://doi.org/10.1016/S0016-7037(98)00243-9
dc.identifier.citedreferenceGlasauer, S., Langley, S., & Beveridge, T. J. ( 2001 ). Sorption of Fe (Hydr)Oxides to the surface of Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed de novo. Applied and Environmental Microbiology, 67 ( 12 ), 5544 – 5550. https://doi.org/10.1128/AEM.67.12.5544-5550.2001
dc.identifier.citedreferenceGlasauer, S., Langley, S., Boyanov, M., Lai, B., Kemner, K., & Beveridge, T. J. ( 2007 ). Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Applied and Environmental Microbiology, 73 ( 3 ), 993 – 996. https://doi.org/10.1128/AEM.01492-06
dc.identifier.citedreferenceGlasauer, S., Langley, S., & Beveridge, T. J. ( 2002 ). Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science, 295 ( 5552 ), 117 – 119.
dc.identifier.citedreferenceHalevy, I., & Bachan, A. ( 2017 ). The geologic history of seawater pH. Science, 355 ( 6329 ), 1069 – 1071. https://doi.org/10.1126/science.aal4151
dc.identifier.citedreferenceHan, R., Liu, T., Li, F., Li, X., Chen, D., & Wu, Y. ( 2018 ). Dependence of secondary mineral formation on Fe(II) production from ferrihydrite reduction by Shewanella oneidensis MR-1. ACS Earth and Space Chemistry, 2 ( 4 ), 399 – 409. https://doi.org/10.1021/acsearthspacechem.7b00132
dc.identifier.citedreferenceHan, X., Tomaszewski, E. J., Sorwat, J., Pan, Y., Kappler, A., & Byrne, J. M. ( 2020 ). Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation. Environmental Science and Technology, 54 ( 7 ), 4121 – 4130. https://doi.org/10.1021/acs.est.9b07095
dc.identifier.citedreferenceHansel, C. M., Benner, S. G., Neiss, J., Dohnalkova, A., Kukkadapu, R. K., & Fendorf, S. ( 2003 ). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67 ( 16 ), 2977 – 2992. https://doi.org/10.1016/S0016-7037(03)00276-X
dc.identifier.citedreferenceHarder, H. ( 1978 ). Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26 ( 1 ), 65 – 72. https://doi.org/10.1346/CCMN.1978.0260108
dc.identifier.citedreferenceHeimann, A., Johnson, C. M., Beard, B. L., Valley, J. W., Roden, E. E., Spicuzza, M. J., & Beukes, N. J. ( 2010 ). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments. Earth and Planetary Science Letters, 294 ( 1–2 ), 8 – 18. https://doi.org/10.1016/j.epsl.2010.02.015
dc.identifier.citedreferenceHiggins, J. A., Fischer, W. W., & Schrag, D. P. ( 2009 ). Oxygenation of the ocean and sediments: Consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284 ( 1–2 ), 25 – 33. https://doi.org/10.1016/j.epsl.2009.03.039
dc.identifier.citedreferenceHinz, I. L., Nims, C., Theuer, S., Templeton, A. S., & Johnson, J. E. ( 2021 ). Ferric iron triggers greenalite formation in simulated Archean seawater. Geology, 49, 905 – 910. https://doi.org/10.1130/g48495.1
dc.identifier.citedreferenceHolland, H. D. ( 1984 ). The chemical evolution of the atmosphere and ocean. Princeton University Press.
dc.identifier.citedreferenceJanney, D. E., Cowley, J. M., & Buseck, P. R. ( 2000 ). Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite. Clays and Clay Minerals, 48 ( 1 ), 111 – 119. https://doi.org/10.1346/CCMN.2000.0480114
dc.identifier.citedreferenceJiang, C. Z., & Tosca, N. J. ( 2019 ). Fe(II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater. Earth and Planetary Science Letters, 506, 231 – 242. https://doi.org/10.1016/j.epsl.2018.11.010
dc.identifier.citedreferenceJiang, C. Z., & Tosca, N. J. ( 2020 ). Growth kinetics of siderite at 298.15 K and 1 bar. Geochimica et Cosmochimica Acta, 274, 97 – 117. https://doi.org/10.1016/j.gca.2020.01.047
dc.identifier.citedreferenceJohnson, C. M., Beard, B. L., & Roden, E. E. ( 2008 ). The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annual Review of Earth and Planetary Sciences, 36, 457 – 493. https://doi.org/10.1146/annurev.earth.36.031207.124139
dc.identifier.citedreferenceJohnson, C. M., Ludois, J. M., Beard, B. L., Beukes, N. J., & Heimann, A. ( 2013 ). Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis? Geology, 41 ( 11 ), 1147 – 1150. https://doi.org/10.1130/G34698.1
dc.identifier.citedreferenceJohnson, J. E. ( 2019 ). From minerals to metabolisms: Evidence for life before oxygen from the geological record. Free Radical Biology and Medicine, 140, 126 – 137. https://doi.org/10.1016/j.freeradbiomed.2019.01.047
dc.identifier.citedreferenceJohnson, J. E., & Molnar, P. H. ( 2019 ). Widespread and persistent deposition of iron formations for two billion years. Geophysical Research Letters, 46 ( 6 ), 3327 – 3339. https://doi.org/10.1029/2019GL081970
dc.identifier.citedreferenceJohnson, J. E., Muhling, J. R., Cosmidis, J., Rasmussen, B., & Templeton, A. S. ( 2018 ). Low-Fe(III) greenalite was a primary mineral from Neoarchean oceans. Geophysical Research Letters, 45 ( 7 ), 3182 – 3192. https://doi.org/10.1002/2017GL076311
dc.identifier.citedreferenceJones, A. M., Collins, R. N., Rose, J., & Waite, T. D. ( 2009 ). The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica et Cosmochimica Acta, 73 ( 15 ), 4409 – 4422. https://doi.org/10.1016/j.gca.2009.04.025
dc.identifier.citedreferenceJones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J., & Canfield, D. E. ( 2015 ). Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology, 43 ( 2 ), 135 – 138. https://doi.org/10.1130/G36044.1
dc.identifier.citedreferenceJorand, F., Appenzeller, B. M. R., Abdelmoula, M., Refait, P., Block, J. C., & Genin, J.-M. R. ( 2000 ). Assessment of vivianite formation in Shewanella putrefaciens culture. Environmental Technology, 21 ( 9 ), 1001 – 1005.
dc.identifier.citedreferenceKato, S., Itoh, T., Yuki, M., Nagamori, M., Ohnishi, M., Uematsu, K., Suzuki, K., Takashina, T., & Ohkuma, M. ( 2019 ). Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring. ISME Journal, 13 ( 10 ), 2465 – 2474. https://doi.org/10.1038/s41396-019-0447-3
dc.identifier.citedreferenceKellermeier, M., Glaab, F., Klein, R., Melero-García, E., Kunz, W., & García-Ruiz, J. M. ( 2013 ). The effect of silica on polymorphic precipitation of calcium carbonate: An on-line energy-dispersive X-ray diffraction (EDXRD) study. Nanoscale, 5 ( 15 ), 7054 – 7065. https://doi.org/10.1039/c3nr00301a
dc.identifier.citedreferenceKinsela, A. S., Jones, A. M., Bligh, M. W., Pham, A. N., Collins, R. N., Harrison, J. J., Wilsher, K. L., Payne, T. E., & Waite, T. D. ( 2016 ). Influence of dissolved silicate on rates of Fe(II) oxidation. Environmental Science and Technology, 50 ( 21 ), 11663 – 11671. https://doi.org/10.1021/acs.est.6b03015
dc.identifier.citedreferenceKlein, C. ( 2005 ). Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90 ( 10 ), 1473 – 1499. https://doi.org/10.2138/am.2005.1871
dc.identifier.citedreferenceKlein, C., & Beukes, N. J. ( 1992 ). Time distribution, stratigraphy, and sedimentologic setting,and geochemistry of Precambrian iron-formation. In J. W. Schopf & C. Klein (Eds.), The proterozoic biosphere: A multidisciplinary study (pp. 139 – 146 ). Cambridge University Press.
dc.identifier.citedreferenceKnoll, A. H., Bergmann, K. D., & Strauss, J. V. ( 2016 ). Life: The first two billion years. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 ( 1707 ), 20150493. https://doi.org/10.1098/rstb.2015.0493
dc.identifier.citedreferenceKomlos, J., Kukkadapu, R. K., Zachara, J. M., & Jaffé, P. R. ( 2007 ). Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: Effect of redox cycling on Fe(III) bioreduction. Water Research, 41 ( 13 ), 2996 – 3004. https://doi.org/10.1016/j.watres.2007.03.019
dc.identifier.citedreferenceKonhauser, K., Newman, D., & Kappler, A. ( 2005 ). The potential significance of microbial Fe (III) reduction. Geobiology, 3, 167 – 177.
dc.identifier.citedreferenceKonhauser, K. O., Planavsky, N. J., Hardisty, D. S., Robbins, L. J., Warchola, T. J., Haugaard, R., Lalonde, S. V., Partin, C. A., Oonk, P. B. H., Tsikos, H., Lyons, T. W., Bekker, A., & Johnson, C. M. ( 2017 ). Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140 – 177. https://doi.org/10.1016/j.earscirev.2017.06.012
dc.identifier.citedreferenceKonhauser, K. O., Amskold, L., Lalonde, S. V., Posth, N. R., Kappler, A., & Anbar, A. ( 2007 ). Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters, 258 ( 1–2 ), 87 – 100. https://doi.org/10.1016/j.epsl.2007.03.026
dc.identifier.citedreferenceKostka, J. E., Haefele, E., Viehweger, R., & Stucki, J. W. ( 1999 ). Respiration and dissolution of iron(III)-containing clay minerals by bacteria. Environmental Science and Technology, 33 ( 18 ), 3127 – 3133. https://doi.org/10.1021/es990021x
dc.identifier.citedreferenceKrapež, B., Barley, M. E., & Pickard, A. L. ( 2003 ). Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology, 50 ( 5 ), 979 – 1011. https://doi.org/10.1046/j.1365-3091.2003.00594.x
dc.identifier.citedreferenceKrissansen-Totton, J., Arney, G. N., & Catling, D. C. ( 2018 ). Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 16 ), 4105 – 4110. https://doi.org/10.1073/pnas.1721296115
dc.identifier.citedreferenceKukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., & Kennedy, D. W. ( 2004 ). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: Formation of carbonate green rust in the presence of phosphate. Geochimica et Cosmochimica Acta, 68 ( 13 ), 2799 – 2814. https://doi.org/10.1016/j.gca.2003.12.024
dc.identifier.citedreferenceLaBerge, G. ( 1964 ). Development of magnetite in iron formations of the Lake superior region. Economic Geology, 59, 1313 – 1342. https://doi.org/10.2113/gsecongeo.61.2.408
dc.identifier.citedreferenceLafuente, B., Downs, R. T., Yang, H., & Stone, N. ( 2016 ). The power of databases: The RRUFF project. In Highlights in mineralogical crystallography (pp. 1 – 30 ). https://www.degruyter.com/document/doi/10.1515/9783110417104-003/html
dc.identifier.citedreferenceLee, S., & Xu, H. ( 2019 ). One-Step route synthesis of siliceous six-line ferrihydrite: Implication for the formation of natural ferrihydrite. ACS Earth and Space Chemistry, 3 ( 4 ), 503 – 509. https://doi.org/10.1021/acsearthspacechem.8b00179
dc.identifier.citedreferenceLepot, K., Addad, A., Knoll, A. H., Wang, J., Troadec, D., Béché, A., & Javaux, E. J. ( 2017 ). Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nature Communications, 8, 14890. https://doi.org/10.1038/ncomms14890
dc.identifier.citedreferenceLi, Y. L., Cole, D. R., Konhauser, K., & Chan, L. S. ( 2013 ). Quartz nanocrystals in the 2.48 Ga Dales Gorge banded iron formation of Hamersley, Western Australia: Evidence for a change from submarine to subaerial volcanism at the end of the Archean. American Mineralogist, 98 ( 4 ), 582 – 587. https://doi.org/10.2138/am.2013.4205
dc.identifier.citedreferenceLovley, D. R., & Phillips, E. J. P. ( 1988 ). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54 ( 6 ), 1472 – 1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988
dc.identifier.citedreferenceLyu, J., Qin, W., Zhang, C., & Li, F. ( 2020 ). Nanoparticle accumulation in microbial induced carbonate precipitation: The crucial role of extracellular polymeric substance. Geomicrobiology Journal, 37, 837 – 847. https://doi.org/10.1080/01490451.2020.1786866
dc.identifier.citedreferenceMaliva, R. G., Knoll, A. H., & Simonson, B. M. ( 2005 ). Secular change in the Precambrian silica cycle: Insights from chert petrology. Bulletin of the Geological Society of America, 117, 835 – 845. https://doi.org/10.1130/B25555.1
dc.identifier.citedreferenceMcLean, J. S., Pinchuk, G. E., Geydebrekht, O. V., Bilskis, C. L., Zakrajsek, B. A., Hill, E. A., Saffarini, D. A., Romine, M. F., Gorby, Y. A., Fredrickson, J. K., & Beliaev, A. S. ( 2008 ). Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environmental Microbiology, 10 ( 7 ), 1861 – 1876. https://doi.org/10.1111/j.1462-2920.2008.01608.x
dc.identifier.citedreferenceMeyer, H. J. ( 1984 ). The influence of impurities on the growth rate of calcite. Journal of Crystal Growth, 66 ( 3 ), 639 – 646. https://doi.org/10.1016/0022-0248(84)90164-7
dc.identifier.citedreferenceMichalopoulos, P., & Aller, R. C. ( 1995 ). Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. American Association for the Advancement of Science Stable, 270 ( 5236 ), 614 – 617.
dc.identifier.citedreferenceMiot, J., & Etique, M. ( 2016 ). Formation and transformation of iron-bearing minerals by iron(II)-oxidizing and iron(III)-reducing bacteria. In D. Faivre (Ed.), Iron oxides: From nature to applications (pp. 53 – 97 ). Wiley-VCH.
dc.identifier.citedreferenceMozley, P. S., & Carothers, W. W. ( 1992 ). Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska: Effect of microbial activity and water/sediment interaction on early pore-water chemistry. Journal of Sedimentary Petrology, 62 ( 4 ), 681 – 692. https://doi.org/10.1306/D4267988-2B26-11D7-8648000102C1865D
dc.identifier.citedreferenceMucci, A., & Morse, J. W. ( 1982 ). The incorporation of divalent Mg and divalent Sr into calcite overgrowths: Influences of growth rate and solution composition. Geochimica et Cosmochimica Acta, 47, 217 – 233.
dc.identifier.citedreferenceMuhling, J. R., & Rasmussen, B. ( 2020 ). Widespread deposition of greenalite to form Banded Iron Formations before the Great Oxidation Event. Precambrian Research, 339, 105619. https://doi.org/10.1016/j.precamres.2020.105619
dc.identifier.citedreferenceMyers, C. R., & Nealson, K. H. ( 1990 ). Respiration-linked proton translocation couples to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. Journal of Bacteriology, 172 ( 11 ), 6232 – 6238. https://doi.org/10.1128/jb.172.11.6232-6238.1990
dc.identifier.citedreferenceO’Loughlin, E. J., Gorski, C. A., Flynn, T. M., & Scherer, M. M. ( 2019 ). Electron donor utilization andsecondary mineral formation during the bioreduction of lepidocrocite by Shewanella putrefaciens CN32. Minerals, 9 ( 7 ), 434. https://doi.org/10.3390/min9070434
dc.identifier.citedreferenceO’Reilly, S. E. ( 2005 ). Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria. Geochemical Transactions, 6 ( 4 ), 67. https://doi.org/10.1063/1.2084787
dc.identifier.citedreferencePakchung, A. A. H., Soe, C. Z., & Codd, R. ( 2008 ). Studies of iron-uptake mechanisms in two bacterial species of the Shewanella genus adapted to middle-range ( Shewanella putrefaciens ) or Antarctic ( Shewanella gelidimarina ) temperatures. Chemistry and Biodiversity, 5 ( 10 ), 2113 – 2123. https://doi.org/10.1002/cbdv.200890192
dc.identifier.citedreferencePallud, C., Masue-Slowey, Y., & Fendorf, S. ( 2010 ). Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes. Geochimica et Cosmochimica Acta, 74 ( 10 ), 2811 – 2825. https://doi.org/10.1016/j.gca.2010.01.032
dc.identifier.citedreferencePercak-Dennet, E. M., Beard, B. L., Xu, H., Konishi, H., Johnson, C. M., & Roden, E. E. ( 2011 ). Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology, 9, 205 – 220. https://doi.org/10.1111/j.1472-4669.2011.00277.x
dc.identifier.citedreferencePhoenix, V. R., Konhauser, K. O., & Ferris, F. G. ( 2003 ). Experimental study of iron and silica immobilization by bacteria in mixed Fe-Si systems: Implications for microbial silicification in hot springs. Canadian Journal of Earth Sciences, 40 ( 11 ), 1669 – 1678. https://doi.org/10.1139/e03-044
dc.identifier.citedreferencePoulton, S. W., & Canfeld, D. E. ( 2011 ). Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7 ( 2 ), 107 – 112. https://doi.org/10.2113/gselements.7.2.107
dc.identifier.citedreferenceRasmussen, B., Krapež, B., & Meier, D. B. ( 2014 ). Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for postdepositional oxidation of iron-bearing minerals. Bulletin of the Geological Society of America, 126 ( 3–4 ), 438 – 446. https://doi.org/10.1130/B30944.1
dc.identifier.citedreferenceRasmussen, B., Krapež, B., Muhling, J. R., & Suvorova, A. ( 2015 ). Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology, 43, 303 – 306. https://doi.org/10.1130/G36309.1
dc.identifier.citedreferenceRasmussen, B., Meier, D. B., Krapež, B., & Muhling, J. R. ( 2013 ). Iron silicate microgranules as precursor sediments to 2.5-billion-yearold banded iron formations. Geology, 41 ( 4 ), 435 – 438. https://doi.org/10.1130/G33828.1
dc.identifier.citedreferenceRasmussen, B., Muhling, J. R., & Fischer, W. W. ( 2019 ). Evidence from laminated chert in banded iron formations for deposition by gravitational settling of iron-silicate muds. Geology, 47 ( 2 ), 167 – 170. https://doi.org/10.1130/G45560.1
dc.identifier.citedreferenceRasmussen, B., Muhling, J. R., & Krapež, B. ( 2021 ). Greenalite and its role in the genesis of early Precambrian iron formations – A review. Earth-Science Reviews, 217, 103613. https://doi.org/10.1016/j.earscirev.2021.103613
dc.identifier.citedreferenceRasmussen, B., Muhling, J. R., Suvorova, A., & Krapež, B. ( 2016 ). Dust to dust: Evidence for the formation of “primary” hematite dust in banded iron formations via oxidation of iron silicate nanoparticles. Precambrian Research, 284, 49 – 63. https://doi.org/10.1016/j.precamres.2016.07.003
dc.identifier.citedreferenceReddy, T. R., Zheng, X. Y., Roden, E. E., Beard, B. L., & Johnson, C. M. ( 2016 ). Silicon isotope fractionation during microbial reduction of Fe(III)–Si gels under Archean seawater conditions and implications for iron formation genesis. Geochimica et Cosmochimica Acta, 190, 85 – 99. https://doi.org/10.1016/j.gca.2016.06.035
dc.identifier.citedreferenceRobbins, L. J., Funk, S. P., Flynn, S. L., Warchola, T. J., Li, Z., Lalonde, S. V., Rostron, B. J., Smith, A. J. B., Beukes, N. J., de Kock, M. O., Heaman, L. M., Alessi, D. S., & Konhauser, K. O. ( 2019 ). Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nature Geoscience, 12 ( 7 ), 558 – 563. https://doi.org/10.1038/s41561-019-0372-0
dc.identifier.citedreferenceRoden, E. E., & Urrutia, M. M. ( 2002 ). Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiology Journal, 19 ( 2 ), 209 – 251. https://doi.org/10.1080/01490450252864280
dc.identifier.citedreferenceSalas, E. C., Berelson, W. M., Hammond, D. E., Kampf, A. R., & Nealson, K. H. ( 2009 ). The influence of carbon source on the products of dissimilatory iron reduction. Geomicrobiology Journal, 26 ( 7 ), 451 – 462. https://doi.org/10.1080/01490450903060806
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.