Show simple item record

Effect of Nanoscale Confinement on Ultrafast Dynamics of Singlet Fission in TIPS-Pentacene

dc.contributor.authorSilori, Yogita
dc.contributor.authorChawla, Sakshi
dc.contributor.authorYadav, Anita
dc.contributor.authorDe, Arijit K.
dc.date.accessioned2022-12-05T16:38:55Z
dc.date.available2023-12-05 11:38:53en
dc.date.available2022-12-05T16:38:55Z
dc.date.issued2022-11-18
dc.identifier.citationSilori, Yogita; Chawla, Sakshi; Yadav, Anita; De, Arijit K. (2022). "Effect of Nanoscale Confinement on Ultrafast Dynamics of Singlet Fission in TIPS-Pentacene." ChemPhysChem 23(22): n/a-n/a.
dc.identifier.issn1439-4235
dc.identifier.issn1439-7641
dc.identifier.urihttps://hdl.handle.net/2027.42/175184
dc.description.abstractSinglet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from anexcited molecule in singlet electronic state interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticles with a smaller size contain weakly coupled chromophores which are shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores which are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.Ultrafast dynamics of singlet fission within micellar nanocavities of varying size is investigated using femtosecond transient absorption spectroscopy. The nanocavity size controls the delicate interplay between short-range and long-range interactions among TIPS-pentacene chromophores leading to different types of molecular packing, which in turn, fine-tunes the rates and efficiencies of singlet fission.
dc.publisherWILEY-VCH
dc.subject.othersinglet fission
dc.subject.othernano-confinement
dc.subject.otherexcitonic trapping
dc.subject.otherfemtosecond transient absorption spectroscopy
dc.subject.otherfluorescence anisotropy
dc.titleEffect of Nanoscale Confinement on Ultrafast Dynamics of Singlet Fission in TIPS-Pentacene
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175184/1/cphc202200454-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175184/2/cphc202200454_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175184/3/cphc202200454.pdf
dc.identifier.doi10.1002/cphc.202200454
dc.identifier.sourceChemPhysChem
dc.identifier.citedreferenceC. Grieco, G. S. Doucette, R. D. Pensack, M. Payne, A. Rimshaw, G. D. Scholes, J. E. Anthony, J. B. Asbury, J. Am. Chem. Soc. 2016, 138, 16069 – 16080.
dc.identifier.citedreferenceG. Tao, J. Phys. Chem. C. 2019, 123, 29571 – 29579.
dc.identifier.citedreferenceC. B. Dover, J. K. Gallaher, L. Frazer, P. C. Tapping, A. J. Petty, M. J. Crossley, J. E. Anthony, T. W. Kee, T. W. Schmidt, Nat. Chem. 2018, 10, 305 – 310.
dc.identifier.citedreferenceR. D. Pensack, A. J. Tilley, S. R. Parkin, T. S. Lee, M. M. Payne, D. Gao, A. A. Jahnke, D. Oblinsky, P.-F. Li, J. E. Anthony, D. S. Seferos, G. D. Scholes, J. Am. Chem. Soc. 2015, 137, 6790 – 6803.
dc.identifier.citedreferenceM. J. Y. Tayebjee, K. N. Schwarz, R. W. MacQueen, M. Dvořák, A. W. C. Lam, K. P. Ghiggino, D. R. McCamey, T. W. Schmidt, G. J. Conibeer, J. Phys. Chem. C. 2016, 120, 157 – 165.
dc.identifier.citedreferenceK. T. Munson, J. Gan, C. Grieco, G. S. Doucette, J. E. Anthony, J. B. Asbury, J. Phys. Chem. C. 2020, 124, 23567 – 23578.
dc.identifier.citedreferenceA. D. Poletayev, J. Clark, M. W. Wilson, A. Rao, Y. Makino, S. Hotta, R. H. Friend, Adv. Mater. 2014, 26, 919 – 924.
dc.identifier.citedreferenceJ. D. A. Lin, O. V. Mikhnenko, J. Chen, Z. Masri, A. Ruseckas, A. Mikhailovsky, R. P. Raab, J. Liu, P. W. M. Blom, P. M. A. Loi, Mater. Horiz. 2014, 1, 280 – 285.
dc.identifier.citedreferenceS. T. Roberts, R. E. McAnally, J. N. Mastron, D. H. Webber, M. T. Whited, R. L. Brutchey, M. E. Thompson, S. E. Bradforth, J. Am. Chem. Soc. 2012, 134, 6388 – 6400.
dc.identifier.citedreferenceN. Renaud, P. A. Sherratt, M. A. Ratner, J. Phys. Chem. Lett. 2013, 4, 1065 – 1069.
dc.identifier.citedreferenceW. Mou, S. Hattori, P. Rajak, F. Shimojo, A. Nakano, Appl. Phys. Lett. 2013, 102, 173301.
dc.identifier.citedreferenceL. Wang, Y. Olivier, O. V. Prezhdo, D. Beljonne, J. Phys. Chem. Lett. 2014, 5, 3345 – 3353.
dc.identifier.citedreferenceS. R. Yost, J. Lee, M. W. B. Wilson, T. Wu, D. P. McMahon, R. R. Parkhurst, N. J. Thompson, D. N. Congreve, A. Rao, K. Johnson, M. Y. Sfeir, M. G. Bawendi, T. M. Swager, R. H. Friend, M. A. Baldo, T. A. Van Voorhis, Nat. Chem. 2014, 6, 492 – 497.
dc.identifier.citedreferenceC. Sutton, N. R. Tummala, D. Beljonne, J.-L. Brédas, Chem. Mater. 2017, 29, 2777 – 2787.
dc.identifier.citedreferenceJ. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482 – 9483.
dc.identifier.citedreferenceA. N. Stuart, P. C. Tapping, E. Schrefl, D. M. Huang, T. W. Kee, J. Phys. Chem. C. 2019, 123, 5813 – 5825.
dc.identifier.citedreferenceY. Silori, A. Yadav, S. Chawla, A. K. De, in Proceedings of the International Conference on Ultrafast Phenomena 2022, OSA Technical Digest (Optica Publishing Group, 2022 ), In press.
dc.identifier.citedreferenceJ. Zirzlmeiera, D. Lehnherrb, P. B. Cotoc, E. T. Chernickd, R. Casillasa, B. S. Basela, M. Thossc, R. R. Tykwinskid, D. M. Guldi, Proc. Natl. Acad. Sci. USA 2015, 112 ( 17 ) 5325 – 5330.
dc.identifier.citedreferenceY. Silori, S. Chawla, A. K. De, ChemPhysChem. 2020, 21, 1908 – 1917.
dc.identifier.citedreferenceA. Kalaiselvan, S. Dhamija, C. Aswathi, A. K. De, S. Gokulnath, Chem. Commun. 2021, 57, 11485 – 11488.
dc.identifier.citedreferenceY. Silori, A. K. De, J. Photochem. Photobiol. A 2019, 377, 198 – 206.
dc.identifier.citedreferenceY. Silori, A. K. De, J. Mol. Liq. 2019, 298, 112093.
dc.identifier.citedreferenceY. Silori, S. Dey, A. K. De, Chem. Phys. Lett. 2018, 693, 222 – 226.
dc.identifier.citedreferenceF. C. Spano, Acc. Chem. Res. 2010, 43, 429 – 439.
dc.identifier.citedreferenceY. Silori, P. Seliya, A. K. De, J. Phys. Chem. B. 2020, 124, 6825 – 6834.
dc.identifier.citedreferenceW. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510 – 19.
dc.identifier.citedreferenceN. Geacintov, M. Pope, F. Vogel, Phys. Rev. Lett. 1969, 22, 593.
dc.identifier.citedreferenceR. P. Groff, P. Avakian, R. E. Merrifield, Phys. Rev. B. 1970, 1, 815.
dc.identifier.citedreferenceS. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, W. G. Schneider, J. Chem. Phys. 1965, 42, 330.
dc.identifier.citedreferenceJ. J. Burdett, A. M. Muller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506.
dc.identifier.citedreferenceM. Schwoerer, H. C. Wolf, Organic Molecular Solids, WILEY-VCH, Weinheim 2007.
dc.identifier.citedreferenceM. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1960, 11, 371 – 392.
dc.identifier.citedreferenceM. Kasha, Radiat. Res. 1963, 20, 55 – 71.
dc.identifier.citedreferenceM. Kasha, Molecular Excitons in Small Aggregates, In Spectroscopy of the Excited State (Eds.: B. Di Bartolo, D. Pacheco, V. Goldberg ) Springer, Boston, MA, 1976, Vol. 12, pp 337– 363.
dc.identifier.citedreferenceM. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press: New York, 1999.
dc.identifier.citedreferenceG. B. Piland, C. J. Bardeen, J. Phys. Chem. Lett. 2015, 6, 1841 – 1846.
dc.identifier.citedreferenceE. A. Margulies, Y. L. Wu, P. Gawel, S. A. Miller, L. E. Shoer, R. D. Schaller, F. Diederich, M. R. Wasielewski, Angew. Chem. Int. Ed. 2015, 54, 8679 – 8683; Angew. Chem. 2015, 127, 8803 – 8807.
dc.identifier.citedreferenceA. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, A. Rao, Nat. Chem. 2015, 8, 16.
dc.identifier.citedreferenceB. J. Walker, A. J. Musser, D. Beljonne, R. H. Friend, Nat. Chem. 2013, 5, 1019.
dc.identifier.citedreferenceR. D. Pensack, E. E. Ostroumov, A. J. Tilley, S. Mazza, C. Grieco, K. J. Thorley, J. B. Asbury, D. S. Seferos, J. E. Anthony, G. D. Scholes, J. Phys. Chem. Lett. 2016, 7, 2370 – 2375.
dc.identifier.citedreferenceC. Schierl, A. Niazov-Elkan, L. J. Shimon, Y. Feldman, B. Rybtchinski, D. M. Guldi, Nanoscale. 2018, 10, 20147 – 20154.
dc.identifier.citedreferenceA. K. Le, J. A. Bender, S. T. Roberts, J. Phys. Chem. Lett. 2016, 7, 4922 – 4928.
dc.identifier.citedreferenceS. W. Eaton, L. E. Shoer, S. D. Karlen, S. M. Dyar, E. A. Margulies, B. S. Veldkamp, C. Ramanan, D. A. Hartzler, S. Savikhin, T. J. Marks, M. R. Wasielewski, J. Am. Chem. Soc. 2013, 135, 14701 – 14712.
dc.identifier.citedreferenceR. J. Dillon, G. B. Piland, C. J. Bardeen, J. Am. Chem. Soc. 2013, 135, 17278 – 17281.
dc.identifier.citedreferenceA. J. Musser, M. Maiuri, D. Brida, G. Cerullo, R. H. Friend, J. Clark, J. Am. Chem. Soc. 2015, 137, 5130 – 5139.
dc.identifier.citedreferenceC. Wang, M. J. Tauber, J. Am. Chem. Soc. 2010, 132, 13988 – 13991.
dc.identifier.citedreferenceJ. N. Schrauben, J. L. Ryerson, J. Michl, J. C. Johnson, J. Am. Chem. Soc. 2014, 136, 7363 – 7373.
dc.identifier.citedreferenceJ. C. Johnson, A. J. Nozik, J. Michl, J. Am. Chem. Soc. 2010, 132, 16302 – 16303.
dc.identifier.citedreferenceA. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. A. Seifried, H. Bässler, R. H. Friend, J. Am. Chem. Soc. 2010, 132, 12698 – 12703.
dc.identifier.citedreferenceA. Rao, M. W. B. Wilson, S. A. Seifried, R. D. Pietro, R. H. Friend, Phys. Rev. B. 2011, 84, 195411.
dc.identifier.citedreferenceM. W. B. Wilson, A. Rao, B. Ehrler, R. H. Friend, Acc. Chem. Res. 2013, 46, 1330 – 1338.
dc.identifier.citedreferenceA. Kundu, J. Dasgupta, J. Phys. Chem. Lett. 2021, 12, 1468 – 1474.
dc.identifier.citedreferenceA. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, A. Rao, Nat. Chem. 2016, 8, 16 – 23.
dc.identifier.citedreferenceM. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910 – 1921.
dc.identifier.citedreferenceE. C. Greyson, J.-V. Weis, J. Michl, M. A. Ratner, J. Phys. Chem. B. 2010, 114, 14168 – 14177.
dc.identifier.citedreferenceW.-L. Chan, M. Ligges, X.-Y. Zhu, Nat. Chem. 2012, 4, 840 – 845.
dc.identifier.citedreferenceA. M. Alvertis, S. Lukman, T. J. H. Hele, E. G. Fuemmeler, J. Feng, J. Wu, N. C. Greenham, A. W. Chin, A. J. Musser, J. Am. Chem. Soc. 2019, 141, 17558 – 17570.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.