Show simple item record

The Helicity Sign of Flux Transfer Event Flux Ropes and Its Relationship to the Guide Field and Hall Physics in Magnetic Reconnection at the Magnetopause

dc.contributor.authorDahani, S.
dc.contributor.authorKieokaew, R.
dc.contributor.authorGénot, V.
dc.contributor.authorLavraud, B.
dc.contributor.authorChen, Y.
dc.contributor.authorMichotte de Welle, B.
dc.contributor.authorAunai, N.
dc.contributor.authorTóth, G.
dc.contributor.authorCassak, P. A.
dc.contributor.authorFargette, N.
dc.contributor.authorFear, R. C.
dc.contributor.authorMarchaudon, A.
dc.contributor.authorGershman, D.
dc.contributor.authorGiles, B.
dc.contributor.authorTorbert, R.
dc.contributor.authorBurch, J.
dc.date.accessioned2022-12-05T16:39:07Z
dc.date.available2023-12-05 11:39:06en
dc.date.available2022-12-05T16:39:07Z
dc.date.issued2022-11
dc.identifier.citationDahani, S.; Kieokaew, R.; Génot, V. ; Lavraud, B.; Chen, Y.; Michotte de Welle, B.; Aunai, N.; Tóth, G. ; Cassak, P. A.; Fargette, N.; Fear, R. C.; Marchaudon, A.; Gershman, D.; Giles, B.; Torbert, R.; Burch, J. (2022). "The Helicity Sign of Flux Transfer Event Flux Ropes and Its Relationship to the Guide Field and Hall Physics in Magnetic Reconnection at the Magnetopause." Journal of Geophysical Research: Space Physics 127(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/175188
dc.description.abstractFlux Transfer Events (FTEs) are transient magnetic flux ropes typically found at the Earth’s magnetopause on the dayside. While it is known that FTEs are generated by magnetic reconnection, it remains unclear how the details of magnetic reconnection controls their properties. A recent study showed that the helicity sign of FTEs positively correlates with the east-west (By) component of the Interplanetary Magnetic Field (IMF). With data from the Cluster and Magnetospheric Multiscale missions, we performed a statistical study of 166 quasi force-free FTEs. We focus on their helicity sign and possible association with upstream solar wind conditions and local magnetic reconnection properties. Using both in situ data and magnetic shear modeling, we find that FTEs whose helicity sign corresponds to the IMF By are associated with moderate magnetic shears while those that do not correspond to the IMF By are associated with higher magnetic shears. While uncertainty in IMF propagation to the magnetopause may lead to randomness in the determination of the flux rope core field and helicity, we rather propose that for small IMF By, which corresponds to high shear and low guide field, the Hall pattern of magnetic reconnection determines the FTE core field and helicity sign. In that context we explain how the temporal sequence of multiple X-line formation and the reconnection rate are important in determining the flux rope helicity sign. This work highlights a fundamental connection between kinetic processes at work in magnetic reconnection and the macroscale structure of FTEs.Plain Language SummaryIn the vicinity of the Earth’s magnetosphere outer boundary, the magnetopause, twisted magnetic field structures known as “Flux Transfer Events” (FTEs) are often detected by spacecraft in-situ. They temporarily connect the solar wind to the Earth’s ionosphere, allowing the transfer of solar wind flux into the magnetosphere. It is known that FTEs are produced as a consequence of magnetic reconnection, a process that rearranges the topology of sheared magnetic fields, between the shocked solar wind and the geomagnetic field. However, our understanding of how the microphysics of magnetic reconnection can lead to the macroscopic structures of FTEs is still limited. We revisit the in-situ observations of FTEs made by the Cluster and Magnetospheric Multiscale missions. We focus on the twist feature of FTEs as characterized by their helicity and investigate its relationship to solar wind conditions and possible link to magnetic reconnection properties. By investigating local magnetic shear conditions around FTE locations, we found that the FTE helicity is determined by a kinetic feature of magnetic reconnection known as the “Hall magnetic field”. Our study highlights a close connection between a kinetic process of magnetic reconnection and the global structure of FTEs, constituting a cross-scale coupling effect in solar-terrestrial interaction.Key PointsWe study the helicity sign of Flux Transfer Events and investigate upstream solar wind conditions and local magnetic shear around themThe helicity sign is found to be unassociated to the Interplanetary Magnetic Field (By) component when the local magnetic shear is highThe FTEs’ helicity sign in such cases may relate to the Hall field of magnetic reconnection in the absence of a guide field
dc.publisherAmerican Geophysical Union (AGU)
dc.publisherWiley Periodicals, Inc.
dc.titleThe Helicity Sign of Flux Transfer Event Flux Ropes and Its Relationship to the Guide Field and Hall Physics in Magnetic Reconnection at the Magnetopause
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175188/1/2022JA030686-sup-0001-Table_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175188/2/jgra57491_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175188/3/jgra57491.pdf
dc.identifier.doi10.1029/2022JA030686
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., et al. ( 1997 ). The Cluster Ion Spectrometry Experiment. Space Science Reviews, 78, 303 – 350. https://doi.org/10.1023/A:1004929816409
dc.identifier.citedreferenceLundquist, S. ( 1950 ). Magnetohydrostatic fields. Arkiv För Fyzik, 2 ( 35 ), 361 – 365.
dc.identifier.citedreferenceMandt, M. E., Denton, R. E., & Drake, J. F. ( 1994 ). Transition to whistler mediated magnetic reconnection. Geophysical Research Letters, 21 ( 1 ), 73 – 76. https://doi.org/10.1029/93gl03382
dc.identifier.citedreferenceMartin, C. J., Arridge, C. S., Badman, S. V., Billett, D. D., & Barratt, C. J. ( 2020 ). Modeling non-force-free and deformed flux ropes in titan’s ionosphere. Journal of Geophysical Research: Space Physics, 125 ( 4 ), e2019JA027571. https://doi.org/10.1029/2019ja027571
dc.identifier.citedreferenceMozer, F. S., & Hull, A. ( 2010 ). Scaling the energy conversion rate from magnetic field reconnection to different bodies. Physics of Plasmas, 17 ( 10 ), 102906. https://doi.org/10.1063/1.3504224
dc.identifier.citedreferenceNagai, T., Shinohara, I., Fujimoto, M., Hoshino, M., Saito, Y., Machida, S., & Mukai, T. ( 2001 ). Geotail observations of the hall current system: Evidence of magnetic reconnection in the magnetotail. Journal of Geophysical Research, 106 ( A11 ), 25929 – 25949. https://doi.org/10.1029/2001ja900038
dc.identifier.citedreferenceØieroset, M., Phan, T. D., Eastwood, J. P., Fujimoto, M., Daughton, W., Shay, M. A., et al. ( 2011 ). Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection x lines at earth’s magneto p ause. Physical Review Letters, 107, 165007. https://doi.org/10.1103/physrevlett.107.165007
dc.identifier.citedreferencePal, S. ( 2022 ). Uncovering the process that transports magnetic helicity to coronal mass ejection flux ropes. Advances in Space Research, 70 ( 6 ), 1601 – 1613. https://doi.org/10.1016/j.asr.2021.11.013
dc.identifier.citedreferencePaschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T., & Russell, C. T. ( 1982 ). Plasma and magnetic field characteristics of magnetic flux transfer events. Journal of Geophysical Research, 87 ( A4 ), 2159 – 2168. https://doi.org/10.1029/JA087iA04p02159
dc.identifier.citedreferencePollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. ( 2016 ). Fast Plasma Investigation for Magnetospheric Multiscale. Space Science Reviews, 199, 331 – 406. https://doi.org/10.1007/s11214-016-0245-4
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward imf. Annales Geophysicae, 24 ( 1 ), 381 – 392. https://doi.org/10.5194/angeo-24-381-2006
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1982 ). Observations of reverse polarity flux transfer events at the earth’s dayside magnetopause. Nature, 300, 23 – 26. https://doi.org/10.1038/300023a0
dc.identifier.citedreferenceRussell, C. T. ( 1990 ). Magnetic flux ropes in the ionosphere of venus. In Physics of magnetic flux ropes (pp. 413 – 423 ). American Geophysical Union (AGU). https://doi.org/10.1029/gm058p0413
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., et al. ( 2016 ). The Magnetospheric Multiscale Magnetometers. Space Science Reviews, 199, 189 – 256. https://doi.org/10.1007/s11214-014-0057-3
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial isee magnetometer results: Magnetopause observations. Space Science Review, 22, 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1979 ). Isee observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 6 ( 1 ), 33 – 36. https://doi.org/10.1029/GL006i001p00033
dc.identifier.citedreferenceSaunders, M. A., Russell, C. T., & Sckopke, N. ( 1984 ). Flux transfer events: Scale size and interior structure. Geophysical Research Letters, 11 ( 2 ), 131 – 134. https://doi.org/10.1029/gl011i002p00131
dc.identifier.citedreferenceScholer, M. ( 1988 ). Magnetic flux transfer at the magnetopause based on single x line bursty reconnection. Geophysical Research Letters, 15 ( 4 ), 291 – 294. https://doi.org/10.1029/gl015i004p00291
dc.identifier.citedreferenceShue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., et al. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103 ( A8 ), 17691 – 17700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSibeck, D. G., Kuznetsova, M., Angelopoulos, V., Glaßmeier, K.-H., & McFadden, J. P. ( 2008 ). Crater ftes: Simulation results and themis observations. Geophysical Research Letters, 35 ( 17 ). https://doi.org/10.1029/2008gl033568
dc.identifier.citedreferenceSong, Y., & Lysak, R. L. ( 1989 ). Evaluation of twist helicity of flux transfer event flux tubes. Journal of Geophysical Research, 94 ( A5 ), 5273 – 5281. https://doi.org/10.1029/ja094ia05p05273
dc.identifier.citedreferenceSouthwood, D., Farrugia, C., & Saunders, M. ( 1988 ). What are flux transfer events? Planetary and Space Science, 36 ( 5 ), 503 – 508. https://doi.org/10.1016/0032-0633(88)90109-2
dc.identifier.citedreferenceTeh, W. L., Abdullah, M., & Hasbi, A. M. ( 2014a ). Evidence for the core field polarity of magnetic flux ropes against the reconnection guide field. Journal of Geophysical Research: Space Physics, 119, 8979 – 8983. https://doi.org/10.1002/2014JA020509
dc.identifier.citedreferenceTeh, W.-L., Nakamura, R., Karimabadi, H., Baumjohann, W., & Zhang, T. L. ( 2014b ). Correlation of core field polarity of magnetotail flux ropes with the imf by: Reconnection guide field dependency. Journal of Geophysical Research: Space Physics, 119 ( 4 ), 2933 – 2944. https://doi.org/10.1002/2013ja019454
dc.identifier.citedreferenceTrattner, K. J., Mulcock, J. S., Petrinec, S. M., & Fuselier, S. A. ( 2007 ). Location of the reconnection line at the magnetopause during southward imf conditions. Geophysical Research Letters, 34 ( 3 ). https://doi.org/10.1029/2006GL028397
dc.identifier.citedreferenceTrenchi, L., Coxon, J. C., Fear, R. C., Eastwood, J. P., Dunlop, M. W., Trattner, K. J., et al. ( 2019 ). Signatures of magnetic separatrices at the borders of a crater flux transfer event connected to an active x-line. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8600 – 8616. https://doi.org/10.1029/2018ja026126
dc.identifier.citedreferenceTrenchi, L., Marcucci, M. F., Rème, H., Carr, C. M., & Cao, J. B. ( 2011 ). Tc-1 observations of a flux rope: Generation by multiple x line reconnection. Journal of Geophysical Research, 116 ( A5 ). https://doi.org/10.1029/2010ja015986
dc.identifier.citedreferenceWei, H., Russell, C., Zhang, T., & Dougherty, M. ( 2010 ). Comparison study of magnetic flux ropes in the ionospheres of venus, Mars and titan. Icarus, 206 ( 1 ), 174 – 181. https://doi.org/10.1016/j.icarus.2009.03.014
dc.identifier.citedreferenceWright, A. N., & Berger, M. A. ( 1990 ). The interior structure of reconnected flux tubes in a sheared plasma flow. Journal of Geophysical Research, 95 ( A6 ), 8029 – 8036. https://doi.org/10.1029/ja095ia06p08029
dc.identifier.citedreferenceZhang, H., Kivelson, M. G., Angelopoulos, V., Khurana, K. K., Pu, Z. Y., Walker, R. J., et al. ( 2012 ). Generation and properties of in vivo flux transfer events. Journal of Geophysical Research, 117 ( A5 ). https://doi.org/10.1029/2011ja017166
dc.identifier.citedreferenceZhang, H., Kivelson, M. G., Khurana, K. K., McFadden, J., Walker, R. J., Angelopoulos, V., et al. ( 2010 ). Evidence that crater flux transfer events are initial stages of typical flux transfer events. Journal of Geophysical Research, 115 ( A8 ). https://doi.org/10.1029/2009ja015013
dc.identifier.citedreferenceZhang, Y. C., Lavraud, B., Dai, L., Wang, C., Marchaudon, A., Avanov, L., et al. ( 2017 ). Quantitative analysis of a hall system in the exhaust of asymmetric magnetic reconnection. Journal of Geophysical Research: Space Physics, 122 ( 5 ), 5277 – 5289. https://doi.org/10.1002/2016ja023620
dc.identifier.citedreferenceAkhavan-Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U., Grandin, M., & Stawarz, J. E. ( 2020 ). Comparative analysis of the vlasiator simulations and mms observations of multiple x-line reconnection and flux transfer events. Journal of Geophysical Research: Space Physics, 125 ( 7 ), e2019JA027410. https://doi.org/10.1029/2019JA027410
dc.identifier.citedreferenceAkhavan-Tafti, M., Slavin, J. A., Sun, W. J., Le, G., & Gershman, D. J. ( 2019 ). MMS Observations of Plasma Heating Associated With FTE Growth. Geophysical Research Letters, 46 ( 22 ), 12654 – 12664. https://doi.org/10.1029/2019GL084843
dc.identifier.citedreferenceAunai, N., Retinò, A., Belmont, G., Smets, R., Lavraud, B., & Vaivads, A. ( 2011 ). The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection. Annales Geophysicae, 29 ( 9 ), 1571 – 1579. https://doi.org/10.5194/angeo-29-1571-2011
dc.identifier.citedreferenceBalogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., et al. ( 2001 ). The Cluster Magnetic Field Investigation: Overview of in-flight performance and initial results. Annales Geophysicae, 19, 1207 – 1217. https://doi.org/10.5194/angeo-19-1207-2001
dc.identifier.citedreferenceBerger, M. A. ( 1982 ). Rapid reconnection and the conservation of magnetic helicity. Bulletin of the American Astronomical Society, 15.
dc.identifier.citedreferenceBerger, M. A. ( 1984 ). Magnetic helicity: Gauge-invariant formulation and conservation properties. Bulletin of the American Astronomical Society, 16.
dc.identifier.citedreferenceBerger, M. A. ( 1999 ). Introduction to magnetic helicity. Plasma Physics and Controlled Fusion, 41 ( 12B ), B167 – B175. https://doi.org/10.1088/0741-3335/41/12b/312
dc.identifier.citedreferenceBerger, M. A., & Field, G. B. ( 1984 ). The topological properties of magnetic helicity. Journal of Fluid Mechanics, 147, 133 – 148. https://doi.org/10.1017/S0022112084002019
dc.identifier.citedreferenceBorg, A. L., Øieroset, M., Phan, T. D., Mozer, F. S., Pedersen, A., Mouikis, C., et al. ( 2005 ). Cluster encounter of a magnetic reconnection diffusion region in the near-earth magnetotail on september 19, 2003. Geophysical Research Letters, 32 ( 19 ). https://doi.org/10.1029/2005gl023794
dc.identifier.citedreferenceBothmer, V., & Schwenn, R. ( 1998 ). The structure and origin of magnetic clouds in the solar wind. Annales Geophysicae, 16 ( 1 ), 1 – 24. https://doi.org/10.1007/s00585-997-0001-x
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric Multiscale Overview and Science Objectives. Space Science Reviews, 199, 5 – 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force-free fields with constant alpha. Journal of Geophysical Research, 93 ( A7 ), 7217 – 7224. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceChen, Y., Tóth, G., Hietala, H., Vines, S. K., Zou, Y., Nishimura, Y., et al. ( 2020 ). Magnetohydrodynamic with embedded particle-in-cell simulation of the geospace environment modeling dayside kinetic processes challenge event. Earth and Space Science, 7 ( 11 ), e2020EA001331. https://doi.org/10.1029/2020ea001331
dc.identifier.citedreferenceCooling, B. M. A., Owen, C. J., & Schwartz, S. J. ( 2001 ). Role of the magnetosheath flow in determining the motion of open flux tubes. Journal of Geophysical Research, 106 ( A9 ), 18763 – 18775. https://doi.org/10.1029/2000ja000455
dc.identifier.citedreferenceCowley, S. W. H. ( 1982 ). The causes of convection in the earth’s magnetosphere: A review of developments during the ims. Reviews of Geophysics, 20 ( 3 ), 531 – 565. https://doi.org/10.1029/rg020i003p00531
dc.identifier.citedreferenceDai, L. ( 2018 ). Structures of hall fields in asymmetric magnetic reconnection. Journal of Geophysical Research: Space Physics, 123, 7332 – 7341. https://doi.org/10.1029/2018ja025251
dc.identifier.citedreferenceDasso, S., Mandrini, C. H., Démoulin, P., & Farrugia, C. J. ( 2003 ). Magnetic helicity analysis of an interplanetary twisted flux tube. Journal of Geophysical Research, 108 ( A10 ). https://doi.org/10.1029/2003ja009942
dc.identifier.citedreferenceDenton, R. E., Sonnerup, B. U., Hasegawa, H., Phan, T. D., Russell, C. T., Strangeway, R. J., et al. ( 2016 ). Reconnection guide field and quadrupolar structure observed by mms on 16 october 2015 at 1307 ut. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 9880 – 9887. https://doi.org/10.1002/2016ja023323
dc.identifier.citedreferenceDorelli, J. C., & Bhattacharjee, A. ( 2009 ). On the generation and topology of flux transfer events. Journal of Geophysical Research, 114 ( A6 ). https://doi.org/10.1029/2008ja013410
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Øieroset, M., & Shay, M. A. ( 2012 ). Survival of flux transfer event (fte) flux ropes far along the tail magnetopause. Journal of Geophysical Research, 117 ( A8 ). https://doi.org/10.1029/2012ja017722
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Øieroset, M., Shay, M. A., Malakit, K., Swisdak, M., et al. ( 2013 ). Influence of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space plasmas. Plasma Physics and Controlled Fusion, 55 ( 12 ), 124001. https://doi.org/10.1088/0741-3335/55/12/124001
dc.identifier.citedreferenceEscoubet, C. P., Fehringer, M., & Goldstein, M. ( 2001 ). Introduction the cluster mission. Annales Geophysicae, 19 ( 10/12 ), 1197 – 1200. https://doi.org/10.5194/angeo-19-1197-2001
dc.identifier.citedreferenceFargette, N., Lavraud, B., Øieroset, M., Phan, T. D., Toledo-Redondo, S., Kieokaew, R., et al. ( 2020 ). On the ubiquity of magnetic reconnection inside flux transfer event-like structures at the earth’s magnetopause. Geophysical Research Letters, 47 ( 6 ), e2019GL086726. https://doi.org/10.1029/2019GL086726
dc.identifier.citedreferenceFarrugia, C. J., Chen, L.-J., Torbert, R. B., Southwood, D. J., Cowley, S. W. H., Vrublevskis, A., et al. ( 2011 ). crater” flux transfer events: Highroad to the x line? Journal of Geophysical Research, 116 ( A2 ). https://doi.org/10.1029/2010ja015495
dc.identifier.citedreferenceFarrugia, C. J., Rijnbeek, R. P., Saunders, M. A., Southwood, D. J., Rodgers, D. J., Smith, M. F., et al. ( 1988 ). A multi-instrument study of flux transfer event structure. Journal of Geophysical Research, 93 ( A12 ), 14465 – 14477. https://doi.org/10.1029/ja093ia12p14465
dc.identifier.citedreferenceFear, R. C., Palmroth, M., & Milan, S. E. ( 2012 ). Seasonal and clock angle control of the location of flux transfer event signatures at the magnetopause. Journal of Geophysical Research, 117 ( A4 ). https://doi.org/10.1029/2011JA017235
dc.identifier.citedreferenceGuo, J., Lu, S., Lu, Q., Lin, Y., Wang, X., Huang, K., et al. ( 2021 ). Structure and coalescence of magnetopause flux ropes and their dependence on imf clock angle: Three-dimensional global hybrid simulations. Journal of Geophysical Research: Space Physics, 126 ( 2 ), e2020JA028670. https://doi.org/10.1029/2020ja028670
dc.identifier.citedreferenceHasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q. H., Lavraud, B., et al. ( 2010 ). Evidence for a flux transfer event generated by multiple x-line reconnection at the magnetopause. Geophysical Research Letters, 37, 1. https://doi.org/10.1029/2010GL044219
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L., Battarbee, M., et al. ( 2019 ). Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF B x Component During Southward IMF. Journal of Geophysical Research: Space Physics, 124 ( 6 ), 4037 – 4048. https://doi.org/10.1029/2019ja026821
dc.identifier.citedreferenceHwang, K.-J., Nishimura, Y., Coster, A. J., Gillies, R. G., Fear, R. C., Fuselier, S. A., et al. ( 2020 ). Sequential observations of flux transfer events, poleward-moving auroral forms, and polar cap patches. Journal of Geophysical Research: Space Physics, 125 ( 6 ), e2019JA027674. https://doi.org/10.1029/2019ja027674
dc.identifier.citedreferenceKarimabadi, H., Krauss-Varban, D., Omidi, N., & Vu, H. X. ( 1999 ). Magnetic structure of the reconnection layer and core field generation in plasmoids. Journal of Geophysical Research, 104, 12313 – 12326. https://doi.org/10.1029/1999ja900089
dc.identifier.citedreferenceKieokaew, R., Lavraud, B., Fargette, N., Marchaudon, A., Génot, V., Jacquey, C., et al. ( 2021 ). Statistical relationship between interplanetary magnetic field conditions and the helicity sign of flux transfer event flux ropes. Geophysical Research Letters, 48 ( 6 ), e2020GL091257. https://doi.org/10.1029/2020GL091257
dc.identifier.citedreferenceKing, J. H., & Papitashvili, N. E. ( 2005 ). Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data. Journal of Geophysical Research, 110 ( A2 ). https://doi.org/10.1029/2004ja010649
dc.identifier.citedreferenceLaBelle, J., Treumann, R. A., Haerendel, G., Bauer, O. H., Paschmann, G., Baumjohann, W., et al. ( 1987 ). Ampte irm observations of waves associated with flux transfer events in the magnetosphere. Journal of Geophysical Research, 92 ( A6 ), 5827 – 5843. https://doi.org/10.1029/ja092ia06p05827
dc.identifier.citedreferenceLe, A., Egedal, J., Daughton, W., Fox, W., & Katz, N. ( 2009 ). Equations of state for collisionless guide-field reconnection. Physical Review Letters, 102, 085001. https://doi.org/10.1103/physrevlett.102.085001
dc.identifier.citedreferenceLeamon, R. J., Canfield, R. C., Jones, S. L., Lambkin, K., Lundberg, B. J., & Pevtsov, A. A. ( 2004 ). Helicity of magnetic clouds and their associated active regions. Journal of Geophysical Research, 109 ( A5 ). https://doi.org/10.1029/2003ja010324
dc.identifier.citedreferenceLee, L. C., & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at the earth’s magnetopause. Geophysical Research Letters, 12 ( 2 ), 105 – 108. https://doi.org/10.1029/GL012i002p00105
dc.identifier.citedreferenceLepping, R. P., Jones, J. A., & Burlaga, L. F. ( 1990 ). Magnetic field structure of interplanetary magnetic clouds at 1 au. Journal of Geophysical Research, 95, 11957. https://doi.org/10.1029/ja095ia08p11957
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.