Show simple item record

Photochemical C(sp2)−H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes

dc.contributor.authorLasky, Matthew R.
dc.contributor.authorSalvador, Tolani K.
dc.contributor.authorMukhopadhyay, Sukrit
dc.contributor.authorRemy, Matthew S.
dc.contributor.authorVaid, Thomas P.
dc.contributor.authorSanford, Melanie S.
dc.date.accessioned2022-12-05T16:39:21Z
dc.date.available2023-12-05 11:39:16en
dc.date.available2022-12-05T16:39:21Z
dc.date.issued2022-11-14
dc.identifier.citationLasky, Matthew R.; Salvador, Tolani K.; Mukhopadhyay, Sukrit; Remy, Matthew S.; Vaid, Thomas P.; Sanford, Melanie S. (2022). "Photochemical C(sp2)−H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes." Angewandte Chemie 134(46): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/175192
dc.description.abstractThis report describes the development of a photochemical method for C(sp2)−H pyridination that leverages the photoexcitation of electron donor–acceptor (EDA) complexes. Experimental and DFT studies show that black light (λmax≈350 nm) irradiation of solutions of protonated pyridines (acceptors) and aromatic C−H substrates (donors) results in single electron transfer to form aryl radical cation intermediates that can be trapped with pyridine nucleophiles under aerobic conditions. With some modification of the reaction conditions, this EDA activation mode is also effective for promoting the oxidatively triggered SNAr pyridination of aryl halides. Overall, this report represents an inexpensive and atom-economical approach to photochemical pyridination reactions that eliminates the requirement of an exogenous photocatalyst.We leverage the photoexcitation of arene–pyridinium electron donor–acceptor (EDA) complexes to achieve C(sp2)−H pyridination. Black light irradiation of the simple combination of arene substrate, pyridine, acid (to generate a pyridinium acceptor in situ), and O2 (terminal oxidant) affords N-arylpyridinium products. This transformation proceeds without an exogenous photocatalyst, complementing prior photochemical C(sp2)−H amination methods.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPhotochemistry
dc.subject.otherReaction Mechanisms
dc.subject.otherC−H Functionalization
dc.subject.otherN-Heterocycles
dc.subject.otherRadical Intermediates
dc.titlePhotochemical C(sp2)−H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175192/1/ange202208741_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175192/2/ange202208741-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175192/3/ange202208741.pdf
dc.identifier.doi10.1002/ange.202208741
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceT. S. Hamilton, R. Adams, J. Am. Chem. Soc. 1928, 50, 2260 – 2263;
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Sowmiah, J. M. S. S. Esperança, L. P. N. Rebelo, C. A. M. Afonso, Org. Chem. Front. 2018, 5, 453 – 493;
dc.identifier.citedreferenceZ. Nairoukh, M. Wollenburg, C. Schlepphorst, K. Bergander, F. Glorius, Nat. Chem. 2019, 11, 264 – 270.
dc.identifier.citedreferenceThe yields in Tables 1–4 are calculated with respect to HBF 4 ⋅Et 2 O as the limiting reagent under our standard reaction conditions (1 equiv HBF 4 ⋅Et 2 O, 1.05 equiv pyridine, 2.5 equiv arene), because one equivalent of the BF 4 anion is required to balance the charge of the pyridinium product. In cases were 1 equiv of the arene is utilized, yields are calculated with respect to the arene.
dc.identifier.citedreferenceK. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2, 715 – 722.
dc.identifier.citedreferenceN. L. Reed, T. P. Yoon, Chem. Soc. Rev. 2021, 50, 2954 – 2967.
dc.identifier.citedreferenceJ.-M. Aubry, B. Mandard-Cazin, M. Rougee, R. V. Bensasson, J. Am. Chem. Soc. 1995, 117, 9159 – 9164;
dc.identifier.citedreferenceC. Pierlot, J.-M. Aubry, Chem. Commun. 1997, 2289 – 2290;
dc.identifier.citedreferenceG. R. Martinez, J.-L. Ravanat, M. H. G. Medeiros, J. Cadet, P. Di Mascio, J. Am. Chem. Soc. 2000, 122, 10212 – 10213.
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014, 12, 6059 – 6071.
dc.identifier.citedreferenceA control experiment was conducted to confirm that naphthyl-pyridinium product C is stable under photochemical conditions. Complete details can be found in the Supporting Information (p. S19–20).
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Azizi, A. Ebrahimi, J. Mol. Liq. 2019, 276, 170 – 178;
dc.identifier.citedreferenceE. G. Hohenstein, C. D. Sherrill, J. Phys. Chem. A 2009, 113, 878 – 886;
dc.identifier.citedreferenceC. D. Sherrill, T. Takatani, E. G. Hohenstein, J. Phys. Chem. A 2009, 113, 10146 – 10159.
dc.identifier.citedreferenceSee Figure S10 for the Job plot and Figure S12 for NMR spectra of biphenyl, pyridinium tetrafluoroborate and a 1 : 1 mixture of these compounds.
dc.identifier.citedreferenceThe time course for the formation of 1 was nearly identical under the standard conditions and upon the addition of 25 mol % of 3 at the outset of the reaction (Figure S13). This result provides evidence against an autocatalysis scenario in which the N -arylpyridinium products accelerate the C(sp 2 )−H pyridination reaction.
dc.identifier.citedreferenceWith electron deficient pyridines, higher yields were obtained using biphenyl as the limiting reagent in the presence of an excess of the pyridine, potentially due to slow capture of the radical cation intermediate with these nucleophiles.
dc.identifier.citedreferenceWe hypothesize that the ortho selectivity observed with stronger pyridine nucleophiles may reflect a kinetic preference, while the meta selectivity with weaker nucleophiles may be a thermodynamic effect. Ongoing work is focused on gaining further mechanistic insights.
dc.identifier.citedreferenceWe are actively investigating the unusual ortho- selectivity observed in our previous report of acridinium-catalyzed C(sp 2 )−H pyridination, ref. [5].
dc.identifier.citedreferenceThe crude yield of 21 was 52 %, and 40 % unreacted Fenbufen starting material remained. Similarly, the crude yield of 22 was 20 %, and 70 % unreacted Prozac remained.
dc.identifier.citedreferenceM. Lee, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 12796 – 12799.
dc.identifier.citedreferenceS N Ar reactions are overall redox neutral and are thus most typically performed under an atmosphere of nitrogen. Nonetheless, there is precedent for oxidatively triggered S N Ar reactions proceeding under net oxidizing conditions. See for example,
dc.identifier.citedreferenceK. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 5368 – 5371;
dc.identifier.citedreferenceT. Sheridan, H. G. Yayla, Y. Lian, J. Genovino, N. Monck, J. W. Burton, Eur. J. Org. Chem. 2020, 2766 – 2770.
dc.identifier.citedreferenceThese conditions (DCE/TFE solvent mixture, N 2 atmosphere) are similar to those used in other photochemical S N Ar reactions. See ref. [5] and N. E. S. Tay, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 16100 – 16104.
dc.identifier.citedreferenceLower yield of 24 (10 %) was observed using black light under otherwise identical conditions. See Table S8 for comparison of the two light sources with each substrate.
dc.identifier.citedreferenceUV/Vis spectroscopic analysis of a 1 : 1 mixture of PyH + and 4-chlorobiphenyl shows a bathochromic shift that is very similar to that observed in the analogous experiment with PyH + and biphenyl. In both cases there is significant absorbance at 365 and 390 nm, consistent with both black light and 390 nm Kessil lamps being effective for these transformations (Tables 2, S7, and S8).
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Holmberg-Douglas, D. A. Nicewicz, Chem. Rev. 2022, 122, 1925 – 2016;
dc.identifier.citedreferenceL. Candish, K. D. Collins, G. C. Cook, J. J. Douglas, A. Gómez-Suárez, A. Jolit, S. Keess, Chem. Rev. 2022, 122, 2907 – 2980;
dc.identifier.citedreferenceL. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nat. Chem. Rev. 2021, 5, 522 – 545;
dc.identifier.citedreferenceJ. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283;
dc.identifier.citedreferenceH. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016 – 9085;
dc.identifier.citedreferenceY. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247 – 9301.
dc.identifier.citedreferenceN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075 – 10166.
dc.identifier.citedreferenceN. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326 – 1330.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q.-Y. Meng, L.-Z. Wu, C.-H. Tung, J. Am. Chem. Soc. 2016, 138, 10080 – 10083;
dc.identifier.citedreferenceK. A. Margrey, A. Levens, D. A. Nicewicz, Angew. Chem. Int. Ed. 2017, 56, 15644 – 15648; Angew. Chem. 2017, 129, 15850 – 15854;
dc.identifier.citedreferenceT. Morofuji, G. Ikarashi, N. Kano, Org. Lett. 2020, 22, 2822 – 2827;
dc.identifier.citedreferenceS. Das, P. Natarajan, B. König, Chem. Eur. J. 2017, 23, 18161 – 18165;
dc.identifier.citedreferenceA. Ruffoni, F. Juliá, T. D. Svejstrup, A. J. McMillan, J. J. Douglas, D. Leonori, Nat. Chem. 2019, 11, 426 – 433;
dc.identifier.citedreferenceK. Targos, O. P. Williams, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 4125 – 4132.
dc.identifier.citedreferenceM. A. Mantell, M. R. Lasky, M. Lee, M. Remy, M. S. Sanford, Org. Lett. 2021, 23, 5213 – 5217.
dc.identifier.citedreferenceFor additional reports utilizing non-amine nucleophiles under similar reaction conditions, see:
dc.identifier.citedreferenceW. Chen, Z. Huang, N. E. S. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. A. Nicewicz, Z. Li, Science 2019, 364, 1170 – 1174;
dc.identifier.citedreferenceN. Holmberg-Douglas, N. P. R. Onuska, D. A. Nicewicz, Angew. Chem. Int. Ed. 2020, 59, 7425 – 7429; Angew. Chem. 2020, 132, 7495 – 7499;
dc.identifier.citedreferenceJ. B. McManus, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 2880 – 2883;
dc.identifier.citedreferenceK. Ohkubo, T. Kobayashi, S. Fukuzumi, Angew. Chem. Int. Ed. 2011, 50, 8652 – 8655; Angew. Chem. 2011, 123, 8811 – 8814;
dc.identifier.citedreferenceK. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Phys. Chem. A 2013, 117, 10719 – 10725;
dc.identifier.citedreferenceA. Tlili, S. Lakhdar, Angew. Chem. 2021, 133, 19678 – 19701;
dc.identifier.citedreferenceY.-W. Zheng, P. Ye, B. Chen, Q.-Y. Meng, K. Feng, W. Wang, L.-Z. Wu, C.-H. Tung, Org. Lett. 2017, 19, 2206 – 2209;
dc.identifier.citedreferenceA. U. Meyer, A. L. Berger, B. König, Chem. Commun. 2016, 52, 10918 – 10921.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. S. Mulliken, J. Am. Chem. Soc. 1952, 74, 811 – 824;
dc.identifier.citedreferenceR. Foster, J. Phys. Chem. 1980, 84, 2135 – 2141;
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Yasuda, C. Pac, H. Sakurai, J. Chem. Soc. Perkin Trans. 1 1981, 746 – 750;
dc.identifier.citedreferenceS. Nagakura, Mol. Cryst. Liq. Cryst. 1985, 126, 9 – 18;
dc.identifier.citedreferenceJ. O. Singh, J. D. Anunziata, J. J. Silber, Can. J. Chem. 1985, 63, 903 – 907;
dc.identifier.citedreferenceG. Pandey, A. Krishna, J. M. Rao, Tetrahedron Lett. 1986, 27, 4075 – 4076;
dc.identifier.citedreferenceC. Pandey, M. Sridhar, U. T. Bhalerao, Tetrahedron Lett. 1990, 31, 5373 – 7376.
dc.identifier.citedreferenceS. V. Rosokha, J. K. Kochi, Acc. Chem. Res. 2008, 41, 641 – 653.
dc.identifier.citedreferenceC. G. S. Lima, T. de M. Lima, M. Duarte, I. D. Jurberg, M. W. Paixão, ACS Catal. 2016, 6, 1389 – 1407.
dc.identifier.citedreferenceFor recent examples employing EDA complexes in alternative photochemical transformations, see:
dc.identifier.citedreferenceE. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 2013, 5, 750 – 756;
dc.identifier.citedreferenceM. Tobisu, T. Furukawa, N. Chatani, Chem. Lett. 2013, 42, 1203 – 1205;
dc.identifier.citedreferenceB. Liu, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2017, 139, 13616 – 13619;
dc.identifier.citedreferenceM.-C. Fu, R. Shang, B. Zhao, B. Wang, Y. Fu, Science 2019, 363, 1429 – 1434;
dc.identifier.citedreferenceI. Bosque, T. Bach, ACS Catal. 2019, 9, 9103 – 9109;
dc.identifier.citedreferenceS. Xie, D. Li, H. Huang, F. Zhang, Y. Chen, J. Am. Chem. Soc. 2019, 141, 16237 – 16242;
dc.identifier.citedreferenceE. de Pedro Beato, D. Spinnato, W. Zhou, P. Melchiorre, J. Am. Chem. Soc. 2021, 143, 12304 – 12314;
dc.identifier.citedreferenceY. Sakakibara, K. Murakami, K. Itami, Org. Lett. 2022, 24, 602 – 607;
dc.identifier.citedreferenceM. Escolano, M. J. Cabrera-Afonso, M. Ribagorda, S. O. Badir, G. A. Molander, J. Org. Chem. 2022, 87, 4981 – 4990;
dc.identifier.citedreferenceH. Wang, J. Wu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2022, 61, e202202061; Angew. Chem. 2022, 134, e202202061.
dc.identifier.citedreferenceJ. Bargon, G. P. Gardini, Tetrahedron Lett. 1976, 17, 2993 – 2996.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. F. Hilinski, J. M. Masnovi, C. Amatore, J. K. Kochi, P. M. Rentzepis, J. Am. Chem. Soc. 1983, 105, 6167 – 6168;
dc.identifier.citedreferenceK. Y. Lee, J. K. Kochi, J. Chem. Soc. Perkin Trans. 2 1992, 1011;
dc.identifier.citedreferenceE. K. Kim, T. M. Bockman, J. K. Kochi, J. Am. Chem. Soc. 1993, 115, 3091 – 3104.
dc.identifier.citedreferenceG. E. M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 2020, 142, 5461 – 5476.
dc.identifier.citedreferenceE. J. McClain, T. M. Monos, M. Mori, J. W. Beatty, C. R. J. Stephenson, ACS Catal. 2020, 10, 12636 – 12641.
dc.identifier.citedreferenceT. Morofuji, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 2013, 135, 5000 – 5003.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger, S. R. Waldvogel, Eur. J. Org. Chem. 2016, 1274 – 1278;
dc.identifier.citedreferenceS. Möhle, S. Herold, F. Richter, H. Nefzger, S. R. Waldvogel, ChemElectroChem 2017, 4, 2196 – 2210;
dc.identifier.citedreferenceL. J. Wesenberg, E. Diehl, T. J. B. Zähringer, C. Dörr, D. Schollmeyer, A. Shimizu, J. Yoshida, U. A. Hellmich, S. R. Waldvogel, Chem. Eur. J. 2020, 26, 17574 – 17580.
dc.identifier.citedreferenceAlternative photochemical methods to form N -arylpyridinium products:
dc.identifier.citedreferenceS. L. Rössler, B. J. Jelier, P. F. Tripet, A. Shemet, G. Jeschke, A. Togni, E. M. Carreira, Angew. Chem. Int. Ed. 2019, 58, 526 – 531; Angew. Chem. 2019, 131, 536 – 541;
dc.identifier.citedreferenceW. S. Ham, J. Hillenbrand, J. Jacq, C. Genicot, T. Ritter, Angew. Chem. Int. Ed. 2019, 58, 532 – 536; Angew. Chem. 2019, 131, 542 – 546;
dc.identifier.citedreferenceJ. Hillenbrand, W. S. Ham, T. Ritter, Org. Lett. 2019, 21, 5363 – 5367.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.