Show simple item record

Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution

dc.contributor.authorKroning, Kayla E.
dc.contributor.authorWang, Wenjing
dc.date.accessioned2022-12-05T16:39:44Z
dc.date.available2024-01-05 11:39:43en
dc.date.available2022-12-05T16:39:44Z
dc.date.issued2022-12
dc.identifier.citationKroning, Kayla E.; Wang, Wenjing (2022). "Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution." Clinical and Translational Medicine 12(12): n/a-n/a.
dc.identifier.issn2001-1326
dc.identifier.issn2001-1326
dc.identifier.urihttps://hdl.handle.net/2027.42/175200
dc.description.abstractG-protein-coupled receptors (GPCRs) are the most abundant receptor type in the human body and are responsible for regulating many physiological processes, such as sensation, cognition, muscle contraction and metabolism. Further, GPCRs are widely expressed in the brain where their agonists make up a large number of neurotransmitters and neuromodulators. Due to the importance of GPCRs in human physiology, genetically encoded sensors have been engineered to detect GPCR agonists at cellular resolution in vivo. These sensors can be placed into two main categories: those that offer real-time information on the signalling dynamics of GPCR agonists and those that integrate the GPCR agonist signal into a permanent, quantifiable mark that can be used to detect GPCR agonist localisation in a large brain area. In this review, we discuss the various designs of real-time and integration sensors, their advantages and limitations, and some in vivo applications. We also discuss the potential of using real-time and integrator sensors together to identify neuronal circuits affected by endogenous GPCR agonists and perform detailed characterisations of the spatiotemporal dynamics of GPCR agonist release in those circuits. By using these sensors together, the overall knowledge of GPCR-mediated signalling can be expanded.G-protein-coupled receptor (GPCR) agonist sensors utilise downstream GPCR signalling events, such as GPCR conformational changes and protein binding, to give a measurable sensor readout.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneuromodulation
dc.subject.otherneurotransmission
dc.subject.othergenetically encoded sensor
dc.subject.otherGPCR
dc.titleGenetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175200/1/ctm21124_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175200/2/ctm21124.pdf
dc.identifier.doi10.1002/ctm2.1124
dc.identifier.sourceClinical and Translational Medicine
dc.identifier.citedreferenceAlhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and drug rewards engage distinct pathways that converge on coordinated hypothalamic and reward circuits. Neuron. 2019; 103: 891 - 908.e6.
dc.identifier.citedreferenceJiang LI, Collins J, Davis R, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem. 2007; 282: 10576 - 10584.
dc.identifier.citedreferenceMassengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods. 2021; 362: 109298.
dc.identifier.citedreferenceTewson PH, Martinka S, Shaner NC, Hughes TE, Quinn AM. New DAG and cAMP sensors optimized for live-cell assays in automated laboratories. J Biomol Screen. 2016; 21: 298 - 305.
dc.identifier.citedreferenceTewson PH, Quinn AM, Hughes TE. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells. J Biomol Screen. 2012; 18: 797 - 806.
dc.identifier.citedreferenceRoss BL, Tenner B, Markwardt ML, et al. Single-color, ratiometric biosensors for detecting signaling activities in live cells. Elife. 2018; 7: e35458.
dc.identifier.citedreferenceBarnea G, Strapps W, Herrada G, et al. The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A. 2008; 105: 64 - 69.
dc.identifier.citedreferenceKroeze WK, Sassano MF, Huang Xi-P, et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol. 2015; 22: 362 - 369.
dc.identifier.citedreferenceLee D, Creed M, Jung K, et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat Methods. 2017; 14: 495 - 503.
dc.identifier.citedreferenceMignocchi N, Krüssel S, Jung K, Lee D, Kwon H-B. Development of a genetically-encoded oxytocin sensor. bioRxiv. 2020. https://doi.org/10.1101/2020.07.14.202598
dc.identifier.citedreferenceShen Y, Zhou M, Cai D, et al. CCR5 closes the temporal window for memory linking. Nature. 2022; 606: 146 - 152.
dc.identifier.citedreferenceKim MW, Wang W, Sanchez MI, Coukos R, von Zastrow M, Ting AY. Time-gated detection of protein–protein interactions with transcriptional readout. Elife. 2017; 6: e30233. -
dc.identifier.citedreferenceKroning KE, Wang W. Temporally gated molecular tools for tracking protein–protein interactions in live cells. Methods Enzymol. 2020; 640: 205 - 223.
dc.identifier.citedreferenceGeng L, Kroning KE, Wang W. SPARK: a transcriptional assay for recording protein–protein interactions in a defined time window. Curr Protoc. 2021; 1: e190.
dc.identifier.citedreferenceWang W, Wildes CP, Pattarabanjird T, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol. 2017; 35: 864 - 871.
dc.identifier.citedreferenceSanchez MI, Ting AY. Directed evolution improves the catalytic efficiency of TEV protease. Nat Methods. 2020; 17: 167 - 174.
dc.identifier.citedreferenceKroning KE, Wang W. Designing a single protein-chain reporter for opioid detection at cellular resolution. Angew Chem Int Ed. 2021; 60: 13358 - 13365.
dc.identifier.citedreferenceKroning KE, Li M, Petrescu DI, Wang W. A genetically encoded sensor with improved fluorescence intensity for opioid detection at cellular resolution. Chem Commun. 2021; 57: 10560 - 10563.
dc.identifier.citedreferenceKroning KE, Li M, Shen J, Fiel H, Nassar M, Wang W. A modular fluorescent sensor motif used to detect opioids, protein–protein interactions, and protease activity. ACS Chem Biol. 2022; 17: 2212 - 2220.
dc.identifier.citedreferenceCabantous S, Nguyen HB, Pedelacq J-D, et al. A new protein–protein interaction sensor based on tripartite split-GFP association. Sci Rep. 2013; 3: 1 - 9.
dc.identifier.citedreferenceZhang Q, Zheng YW, Coughlin SR, Shu X. A rapid fluorogenic GPCR–β-arrestin interaction assay. Protein Sci. 2018; 27: 874 - 879.
dc.identifier.citedreferenceChe T, English J, Krumm BE, et al. Nanobody-enabled monitoring of kappa opioid receptor states. Nat Commun. 2020; 11: 1145.
dc.identifier.citedreferenceChe T, Majumdar S, Zaidi SA, et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018; 172: 55 - 67.e15.
dc.identifier.citedreferencePan H-L Wu Z-Z, Zhou H-Y, et al. Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther. 2008; 117: 141 - 161.
dc.identifier.citedreferenceLeung C, Wong Y. Role of G protein-coupled receptors in the regulation of structural plasticity and cognitive function. Molecules. 2017; 22: 1239.
dc.identifier.citedreferenceBillington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003; 4: 2.
dc.identifier.citedreferenceTzameli I. GPCRs—pivotal players in metabolism. Trends Endocrinol Metab. 2016; 27: 597 - 599.
dc.identifier.citedreferenceGacasan SB, Baker DL, Parrill AL. G protein-coupled receptors: the evolution of structural insight. AIMS Biophys. 2017; 4: 491 - 527.
dc.identifier.citedreferenceHamm HE. How activated receptors couple to G proteins. PNAS. 2001; 98: 4819 - 4821.
dc.identifier.citedreferenceSeyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor–arrestin interactions: the GPCR perspective. Biomolecules. 2021; 11: 218.
dc.identifier.citedreferenceWacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017; 170: 414 - 427.
dc.identifier.citedreferenceNewton AC, Bootman MD, Scott JD. Second messengers. Cold Spring Harb Perspect Biol. 2016; 8: a005926.
dc.identifier.citedreferenceTian X, Kang DS, Benovic JL. β-Arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol. 2014; 219: 173 - 186.
dc.identifier.citedreferenceWang J, Gareri C, Rockman HA. G-protein-coupled receptors in heart disease. Circ Res. 2018; 123: 716 - 735.
dc.identifier.citedreferenceSzafran K Faron-Górecka A, Kolasa M, et al. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: a focus on depression. Pharmacol Rep. 2013; 65: 1498 - 1505.
dc.identifier.citedreferenceHuang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol. 2017; 32: 96 - 110.
dc.identifier.citedreferenceSriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018; 93: 251 - 258.
dc.identifier.citedreferenceChefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009; 47:Unit7.1.
dc.identifier.citedreferenceCalhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a multiple-scan-rate voltammetric waveform for real-time detection of met-enkephalin. ACS Chem Neurosci. 2019; 10: 2022 - 2032.
dc.identifier.citedreferenceDankoski EC, Wightman RM. Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci. 2013; 7: 44.
dc.identifier.citedreferenceVenton BJ, Cao Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst. 2020; 145: 1158 - 1168.
dc.identifier.citedreferenceNicolai EN Trevathan JK, Ross EK, et al. Detection of norepinephrine in whole blood via fast scan cyclic voltammetry. In: Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2017: 111 - 116.
dc.identifier.citedreferenceWang H, Jing M, Li Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr Opin Neurobiol. 2018; 50: 171 - 178.
dc.identifier.citedreferenceZhou Y, Meng J, Xu C, Liu J. Multiple GPCR functional assays based on resonance energy transfer sensors. Front Cell Dev Biol. 2021; 9: 611443.
dc.identifier.citedreferenceHall MP, Unch J, Binkowski BF, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012; 7: 1848 - 1857.
dc.identifier.citedreferenceWan Q, Okashah N, Inoue A, et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem. 2018; 293: 7466 - 7473.
dc.identifier.citedreferenceGalés C, Rebois RV, Hogue M, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005; 2: 177 - 184.
dc.identifier.citedreferenceHuang W, Manglik A, Venkatakrishnan AJ, et al. Structural insights into μ-opioid receptor activation. Nature. 2015; 524: 315 - 321.
dc.identifier.citedreferenceRasmussen SGF, Choi H-J, Fung JJ, et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature. 2011; 469: 175 - 180.
dc.identifier.citedreferenceWingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell. 2019; 176: 479 - 490.e12.
dc.identifier.citedreferenceKruse AC, Ring AM, Manglik A, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013; 504: 101 - 106.
dc.identifier.citedreferenceNehmea R, Carpenter B, Singhal A, et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One. 2017; 12: 1 - 26.
dc.identifier.citedreferenceMaziarz M, Park J-C, Leyme A, et al. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell. 2020; 182: 770 - 785.e16.
dc.identifier.citedreferenceAdjobo-Hermans MJ, Goedhart J, van Weeren L, et al. Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol. 2011; 9: 32.
dc.identifier.citedreferenceMastop M, Reinhard NR, Zuconelli CR, et al. A FRET-based biosensor for measuring Gα13 activation in single cells. PLoS One. 2018; 13: e0193705.
dc.identifier.citedreferenceSaulière A, Bellot M, Paris H, et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol. 2012; 8: 622 - 630.
dc.identifier.citedreferenceAzpiazu I, Gautam N. A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J Biol Chem. 2004; 279: 27709 - 27718.
dc.identifier.citedreferenceBünemann M, Frank M, Lohse MJ. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A. 2003; 100: 16077 - 16082.
dc.identifier.citedreferenceFrank M, Thümer L, Lohse MJ, Bünemann MG. Protein activation without subunit dissociation depends on a Gαi-specific region. J Biol Chem. 2005; 280: 24584 - 24590.
dc.identifier.citedreferenceGalés C, Van Durm JJJ, Schaak S, et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol. 2006; 13: 778 - 786.
dc.identifier.citedreferenceMasuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal. 2015; 8: ra123.
dc.identifier.citedreferenceOlsen RHJ, DiBerto JF, English JG, et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol. 2020; 16: 841 - 849.
dc.identifier.citedreferenceHein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005; 24: 4106 - 4114.
dc.identifier.citedreferenceNobles M, Benians A, Tinker A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A. 2005; 102: 18706 - 18711.
dc.identifier.citedreferenceHein P, Rochais F, Hoffmann C, et al. GS activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem. 2006; 281: 33345 - 33351.
dc.identifier.citedreferencePhilip F, Sengupta P, Scarlata S. Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem. 2007; 282: 19203 - 19216.
dc.identifier.citedreferenceAngers S, Salahpour A, Joly E, et al. Detection of β 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A. 2000; 97: 3684 - 3689.
dc.identifier.citedreferenceKroeger KM, Hanyaloglu AC, Seeber RM, Miles LEC, Eidne KA. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001; 276: 12736 - 12743.
dc.identifier.citedreferenceHanyaloglu AC, Seeber RM, Kohout TA, Lefkowitz RJ, Eidne KA. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes: differential regulation of β-arrestins 1 and 2. J Biol Chem. 2002; 277: 50422 - 50430.
dc.identifier.citedreferenceHasbi A, Devost D, Laporte SA, Zingg HH. Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol Endocrinol. 2004; 18: 1277 - 1286.
dc.identifier.citedreferenceNamkung Y, Le Gouill C, Lukashova V, et al. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun. 2016; 7: 12178.
dc.identifier.citedreferenceCharest PG, Bouvier M. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances β-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. J Biol Chem. 2003; 278: 41541 - 41551.
dc.identifier.citedreferenceHuang Q, Acha V, Yow R, Schneider E, Sardar DK, Hornsby PJ. Bioluminescence measurements in mice using a skin window. J Biomed Opt. 2007; 12: 054012.
dc.identifier.citedreferenceAudet M, Lagacé M, Silversides DW, Bouvier M. Protein–protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. FASEB J. 2010; 24: 2829 - 2838.
dc.identifier.citedreferenceShukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci U S A. 2008; 105: 9988 - 9993.
dc.identifier.citedreferenceCharest PG, Terrillon S, Bouvier M. Monitoring agonist-promoted conformational changes of β-arrestin in living cells by intramolecular BRET. EMBO Rep. 2005; 6: 334 - 340.
dc.identifier.citedreferenceOishi A, Dam J, Jockers R. β-Arrestin-2 BRET biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. ACS Sens. 2020; 5: 57 - 64.
dc.identifier.citedreferenceVilardaga JP, Bünemann M, Krasell C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol. 2003; 21: 807 - 812.
dc.identifier.citedreferenceKrasel C, Bünemann M, Lorenz K, Lohse MJ. Β-Arrestin binding to the Β2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem. 2005; 280: 9528 - 9535.
dc.identifier.citedreferenceHoffmann C, Ziegler N, Reiner S, Krasel C, Lohse MJ. Agonist-selective, receptor-specific interaction of human P2Y receptors with β-arrestin-1 and -2. J Biol Chem. 2008; 283: 30933 - 30941.
dc.identifier.citedreferenceVilardaga JP, Steinmeyer R, Harms GS, Lohse MJ. Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol. 2005; 1: 25 - 28.
dc.identifier.citedreferenceChachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A. 2006; 103: 15463 - 15468.
dc.identifier.citedreferenceRochais F, Vilardaga J-P, Nikolaev VO, Bünemann M, Lohse MJ, Engelhardt S. Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest. 2007; 117: 229 - 235.
dc.identifier.citedreferenceReiner S, Ambrosio M, Hoffmann C, Lohse MJ. Differential signaling of the endogenous agonists at the β2-adrenergic receptor. J Biol Chem. 2010; 285: 36188 - 36198.
dc.identifier.citedreferenceZhang WH, Herde MK, Mitchell JA, et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat Chem Biol. 2018; 14: 861 - 869.
dc.identifier.citedreferenceOkumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. PNAS. 2005; 102: 8740 - 8745.
dc.identifier.citedreferenceMarvin JS, Borghuis BG, Tian L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013; 10: 162 - 170.
dc.identifier.citedreferenceMarvin JS, Scholl B, Wilson DE, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods. 2018; 15: 936 - 939.
dc.identifier.citedreferenceAggarwal A, Liu R, Chen Y, et al. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. bioRxiv. 2022. https://doi.org/10.1101/2022.02.13.480251
dc.identifier.citedreferenceHelassa N, Dürst C, Coates C, et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc Natl Acad Sci U S A. 2018; 115: 5594 - 5599.
dc.identifier.citedreferenceMarvin JS, Shimoda Y, Magloire V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods. 2019; 16: 763 - 770.
dc.identifier.citedreferenceBorden PM, Zhang P, Shivange AV, et al. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. bioRxiv. 2020. https://doi.org/10.1101/2020.02.07.939504
dc.identifier.citedreferenceUnger EK, Keller JP, Altermatt M, et al. Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell. 2020; 183: 1986 - 2002.e26.
dc.identifier.citedreferenceShivange AV, Borden PM, Muthusamy AK, et al. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J Gen Physiol. 2018; 151: 738 - 757.
dc.identifier.citedreferenceMuthusamy AK, Kim CH, Virgil SC, et al. Three mutations convert the selectivity of a protein sensor from nicotinic agonists to S-methadone for use in cells, organelles, and biofluids. J Am Chem Soc. 2022; 144: 8480 - 8486.
dc.identifier.citedreferenceNichols AL, Blumenfeld Z, Fan C, et al. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. Elife. 2022; 11: e74648.
dc.identifier.citedreferencePatriarchi T, Cho JR, Merten K, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018; 360: eaat4422.
dc.identifier.citedreferenceSun F, Zeng J, Jing M, et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell. 2018; 174: 481 - 496.e19.
dc.identifier.citedreferenceAbraham AD, Casello SM, Schattauer SS, et al. Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology. 2021; 46: 2330 - 2339.
dc.identifier.citedreferenceWan J, Peng W, Li X, et al. A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci. 2021; 24: 746 - 752.
dc.identifier.citedreferenceDong C, Ly C, Dunlap LE, et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell. 2021; 184: 2779 - 2792.e18.
dc.identifier.citedreferenceFeng J, Zhang C, Lischinsky JE, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron. 2019; 102: 745 - 761.e8.
dc.identifier.citedreferenceOe Y, Wang X, Patriarchi T, et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat Commun. 2020; 11: 471.
dc.identifier.citedreferenceDong A, He K, Dudok B, et al. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat Biotechnol. 2022; 40: 787 - 798.
dc.identifier.citedreferencePeng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020; 369: eabb0556.
dc.identifier.citedreferenceWu Z, Cui Y, Wang H, et al. A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release. bioRxiv. 2020. https://doi.org/10.1101/2020.05.04.075564
dc.identifier.citedreferenceJing M, Li Y, Zeng J, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020; 17: 1139 - 1146.
dc.identifier.citedreferenceJing M, Zhang P, Wang G, et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol. 2018; 36: 726 - 737.
dc.identifier.citedreferenceWu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci. 2022; 23: 257 - 274.
dc.identifier.citedreferenceSun F, Zhou J, Dai B, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020; 17: 1156 - 1166.
dc.identifier.citedreferencePatriarchi T, Mohebi A, Sun J, et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat Methods. 2020; 17: 1147 - 1155.
dc.identifier.citedreferenceCorre J, van Zessen R, Loureiro M, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife. 2018; 7: 1 - 22.
dc.identifier.citedreferenceLiu Y, Jean-Richard-Dit-Bressel P, Yau JO-Y, et al. The mesolimbic dopamine activity signatures of relapse to alcohol-seeking. J Neurosci. 2020; 40: 6409 - 6427.
dc.identifier.citedreferenceLefevre EM, Pisansky MT, Toddes C, et al. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology. 2020; 45: 1781 - 1792.
dc.identifier.citedreferenceLecat S, Matthes HWD, Pepperkok R, Simpson JC, Galzi JL. A fluorescent live imaging screening assay based on translocation criteria identifies novel cytoplasmic proteins implicated in G protein-coupled receptor signaling pathways. Mol Cell Proteomics. 2015; 14: 1385 - 1399.
dc.identifier.citedreferenceBarak LS, Ferguson SSG, Zhang J, Caron MG. A β-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem. 1997; 272: 27497 - 27500.
dc.identifier.citedreferenceZhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/β-arrestin endocytic complexes. J Biol Chem. 1999; 274: 10999 - 11006.
dc.identifier.citedreferenceStoeber M, Jullié D, Lobingier BT, et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron. 2018; 98: 963 - 976.e5.
dc.identifier.citedreferenceO’Neill PR, Karunarathne WKA, Kalyanaraman V, Silvius JR, Gautama N. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. Proc Natl Acad Sci U S A. 2012; 109: E3568 - E3577.
dc.identifier.citedreferenceNakai J, Ohkura M, Imoto K. A high signal-to-noise Ca 2+ probe composed of a single green fluorescent protein. Nat Biotechnol. 2001; 19: 137 - 141.
dc.identifier.citedreferenceChen TW, Wardill TJ, Sun Yi, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013; 499: 295 - 300.
dc.identifier.citedreferenceAkerboom J, Chen T-W, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012; 32: 13819 - 13840.
dc.identifier.citedreferenceDana H, Sun Yi, Mohar B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019; 16: 649 - 657.
dc.identifier.citedreferenceTian L, Hires SA, Mao T, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009; 6: 875 - 881.
dc.identifier.citedreferenceBroussard GJ, Liang Y, Fridman M, et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat Neurosci. 2018; 21: 1272 - 1280.
dc.identifier.citedreferenceOh J, Lee C, Kaang B-K. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. Korean J Physiol Pharmacol. 2019; 23: 237.
dc.identifier.citedreferenceLohr C, Beiersdorfer A, Fischer T, et al. Using genetically encoded calcium indicators to study astrocyte physiology: a field guide. Front Cell Neurosci. 2021; 15: 690147.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.