Show simple item record

Time-dependent diffusivity and kurtosis in phantoms and patients with head and neck cancer

dc.contributor.authorSolomon, Eddy
dc.contributor.authorLemberskiy, Gregory
dc.contributor.authorBaete, Steven
dc.contributor.authorHu, Kenneth
dc.contributor.authorMalyarenko, Dariya
dc.contributor.authorSwanson, Scott
dc.contributor.authorShukla-Dave, Amita
dc.contributor.authorRussek, Stephen E.
dc.contributor.authorZan, Elcin
dc.contributor.authorKim, Sungheon Gene
dc.date.accessioned2022-12-05T16:39:55Z
dc.date.available2024-03-05 11:39:53en
dc.date.available2022-12-05T16:39:55Z
dc.date.issued2023-02
dc.identifier.citationSolomon, Eddy; Lemberskiy, Gregory; Baete, Steven; Hu, Kenneth; Malyarenko, Dariya; Swanson, Scott; Shukla-Dave, Amita ; Russek, Stephen E.; Zan, Elcin; Kim, Sungheon Gene (2023). "Time- dependent diffusivity and kurtosis in phantoms and patients with head and neck cancer." Magnetic Resonance in Medicine 89(2): 522-535.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/175204
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdiffusion phantom
dc.subject.otherKärger model
dc.subject.otherkurtosis
dc.subject.otherSTEAM EPI
dc.titleTime-dependent diffusivity and kurtosis in phantoms and patients with head and neck cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175204/1/mrm29457.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175204/2/mrm29457_am.pdf
dc.identifier.doi10.1002/mrm.29457
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceVeraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med. 2016; 76: 1582 - 1593.
dc.identifier.citedreferenceSpringer CS, Jr., Li X, Tudorica LA, et al. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR Biomed. 2014; 27: 760 – 73.
dc.identifier.citedreferenceLowry M, Zelhof B, Liney GP, Gibbs P, Pickles MD, Turnbull LW. Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue. Invest Radiol. 2009; 44: 577 - 584.
dc.identifier.citedreferenceChawla S, Loevner LA, Kim SG, et al. Dynamic contrast-enhanced MRI-derived intracellular water lifetime (τ i ): a prognostic marker for patients with head and neck squamous cell carcinomas. Am J Neuroradiol. 2018; 39: 138 - 144.
dc.identifier.citedreferenceSigmund EE, Novikov DS, Sui D, et al. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed. 2014; 27: 519 - 528.
dc.identifier.citedreferenceNovikov DS, Kiselev VG. Effective medium theory of a diffusion-weighted signal. NMR Biomed. 2010; 23: 682 - 697.
dc.identifier.citedreferenceNovikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 2019; 32: e3998.
dc.identifier.citedreferenceKarger J. NMR self-diffusion studies in heterogeneous systems. Adv Colloid Interface Sci. 1985; 23: 129 - 148.
dc.identifier.citedreferenceRussek SE. NIST/NIBIB medical imaging phantom lending library. National Institute of Standards and Technology. 2021.
dc.identifier.citedreferenceMalyarenko DI, Swanson SD, Konar AS, et al. Multicenter repeatability study of a novel quantitative diffusion kurtosis imaging phantom. Tomography. 2019; 5: 36 - 43.
dc.identifier.citedreferenceVeraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016; 142: 384 - 396.
dc.identifier.citedreferenceKellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016; 76: 1574 - 1581.
dc.identifier.citedreferenceAndersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016; 125: 1063 - 1078.
dc.identifier.citedreferenceBuades A, Coll B, Morel JM. A non-local algorithm for image denoising. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California, USA, 2005. pp. 60 – 5.
dc.identifier.citedreferenceVeraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. Neuroimage. 2013; 81: 335 - 346.
dc.identifier.citedreferenceJensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010; 23: 698 - 710.
dc.identifier.citedreferenceKeenan KE, Ainslie M, Barker AJ, et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med. 2018; 79: 48 - 61.
dc.identifier.citedreferenceStatton BK, Smith J, Finnegan ME, Koerzdoerfer G, Quest RA, Grech-Sollars M. Temperature dependence, accuracy, and repeatability of T1 and T2 relaxation times for the ISMRM/NIST system phantom measured using MR fingerprinting. Magn Reson Med. 2022; 87: 1446 - 1460.
dc.identifier.citedreferenceLi X, Huang W, Morris EA, et al. Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci USA. 2008; 105: 17937 - 17942.
dc.identifier.citedreferenceAgre P, Bonhivers M, Borgnia MJ. The aquaporins, blueprints for cellular plumbing systems. J Biol Chem. 1998; 273: 14659 - 14662.
dc.identifier.citedreferenceNovikov DS, Fieremans E, Jensen JH, Helpern JA. Random walks with barriers. Nat Phys. 2011; 7: 508 - 514.
dc.identifier.citedreferenceMitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion-coefficient as a geometrical probe of porous-media. Phys Rev B. 1993; 47: 8565 - 8574.
dc.identifier.citedreferencePfeuffer J, Flogel U, Leibfritz D. Monitoring of cell volume and water exchange time in perfused cells by diffusion-weighted 1H NMR spectroscopy. NMR Biomed. 1998; 11: 11 - 18.
dc.identifier.citedreferenceKim S, Quon H, Loevner LA, et al. Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging. 2007; 26: 1607 - 1617.
dc.identifier.citedreferenceKim S, Loevner LA, Quon H, et al. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. Am J Neuroradiol. 2010; 31: 262 - 268.
dc.identifier.citedreferenceLi JR, Nguyen HT, Nguyen DV, Haddar H, Coatleven J, Le Bihan D. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal. J Magn Reson. 2014; 248: 54 - 65.
dc.identifier.citedreferenceO’Connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017; 14: 169 - 186.
dc.identifier.citedreferenceChenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res. 1997; 3: 1457 - 1466.
dc.identifier.citedreferenceGalons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia. 1999; 1: 113 - 117.
dc.identifier.citedreferenceMoffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA. 2005; 102: 5524 - 5529.
dc.identifier.citedreferenceChinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA. 2000; 97: 1754 - 1759.
dc.identifier.citedreferenceCostantini M, Belli P, Rinaldi P, et al. Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol. 2010; 65: 1005 - 1012.
dc.identifier.citedreferenceSolomon E, Liberman G, Nissan N, Furman-Haran E, Sklair-Levy M, Frydman L. Diffusion-weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn Reson Med. 2020; 84: 1391 - 1403.
dc.identifier.citedreferenceGupta RK, Cloughesy TF, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol. 2000; 50: 215 - 226.
dc.identifier.citedreferenceKim S, Chi-Fishman G, Barnett AS, Pierpaoli C. Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart. Magn Reson Med. 2005; 54: 1387 - 1396.
dc.identifier.citedreferenceLemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov DS, Fieremans E. Time-dependent diffusion in prostate cancer. Invest Radiol. 2017; 52: 405 - 411.
dc.identifier.citedreferenceNovikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA. 2014; 111: 5088 - 5093.
dc.identifier.citedreferenceReynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR Biomed. 2016; 29: 1350 - 1363.
dc.identifier.citedreferenceReynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG. Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging. Magn Reson Med. 2016; 76: 237 - 247.
dc.identifier.citedreferenceJansen JF, Stambuk HE, Koutcher JA, Shukla-Dave A. Non-Gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study. AJNR Am J Neuroradiol. 2010; 31: 741 - 748.
dc.identifier.citedreferenceJensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005; 53: 1432 - 1440.
dc.identifier.citedreferenceKiselev VG, Il’yasov KA. Is the “biexponential diffusion” bilexponential? Magn Reson Med. 2007; 57: 464 - 469.
dc.identifier.citedreferenceGoshima S, Kanematsu M, Noda Y, Kondo H, Watanabe H, Bae KT. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol. 2015; 204: W543 - W549.
dc.identifier.citedreferenceKim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009; 15: 986 - 994.
dc.identifier.citedreferenceJespersen SN, Olesen JL, Hansen B, Shemesh N. Diffusion time dependence of microstructural parameters in fixed spinal cord. Neuroimage. 2018; 182: 329 - 342.
dc.identifier.citedreferenceFieremans E, Novikov DS, Jensen JH, Helpern JA. Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 2010; 23: 711 - 724.
dc.identifier.citedreferenceZhang J, Lemberskiy G, Moy L, Fieremans E, Novikov DS, Kim SG. Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging. NMR Biomed. 2021; 34: e4496.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.