Show simple item record

Advanced MRI to differentiate schwannomas and metastases in the cerebellopontine angle/internal auditory canal

dc.contributor.authorOta, Yoshiaki
dc.contributor.authorLiao, Eric
dc.contributor.authorZhao, Raymond
dc.contributor.authorLobo, Remy
dc.contributor.authorCapizzano, Aristides A.
dc.contributor.authorBapuraj, Jayapalli Rajiv
dc.contributor.authorShah, Gaurang
dc.contributor.authorBaba, Akira
dc.contributor.authorSrinivasan, Ashok
dc.date.accessioned2022-12-05T16:39:57Z
dc.date.available2023-12-05 11:39:56en
dc.date.available2022-12-05T16:39:57Z
dc.date.issued2022-11
dc.identifier.citationOta, Yoshiaki; Liao, Eric; Zhao, Raymond; Lobo, Remy; Capizzano, Aristides A.; Bapuraj, Jayapalli Rajiv; Shah, Gaurang; Baba, Akira; Srinivasan, Ashok (2022). "Advanced MRI to differentiate schwannomas and metastases in the cerebellopontine angle/internal auditory canal." Journal of Neuroimaging 32(6): 1177-1184.
dc.identifier.issn1051-2284
dc.identifier.issn1552-6569
dc.identifier.urihttps://hdl.handle.net/2027.42/175205
dc.description.abstractBackground and PurposeDifferentiating schwannomas and metastases in the cerebellopontine angles (CPA)/internal auditory canals (IAC) can be challenging. This study aimed to assess the role of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) to differentiate schwannomas and metastases in the CPA/IAC.MethodsWe retrospectively reviewed 368 patients who were diagnosed with schwannomas or metastases in the CPA/IAC between April 2017 and February 2022 in a single academic center. Forty-three patients had pretreatment DWI and DCE-MRI along with conventional MRI. Normalized mean apparent diffusion coefficient ratio (nADCmean) and DCE-MRI parameters of fractional plasma volume (Vp), flux rate constant (Kep), and forward volume transfer constant were compared along with patients’ demographics and conventional imaging features between schwannomas and metastases as appropriate. The diagnostic performances and multivariate logistic regression analysis were performed using the significantly different values.ResultsBetween 23 schwannomas (15 males; median 48 years) and 20 metastases (9 males; median 61 years), nADCmean (median: 1.69 vs. 1.43; p = .002), Vp (median: 0.05 vs. 0.20; p < .001), and Kep (median: 0.41 vs. 0.81 minute−1; p < .001) were significantly different. The diagnostic performances of nADCmean, Vp, and Kep were 0.77, 0.90, and 0.83 area under the curves, with cutoff values of 1.68, 0.12, and 0.53, respectively. Vp was identified as the most significant parameter for the tumor differentiation in the multivariate logistic regression analysis (p < .001).ConclusionsDWI and DCE-MRI can help differentiate CPA/IAC schwannomas and metastases, and Vp is the most significant parameter.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherschwannoma
dc.subject.otherDWI
dc.subject.othermetastasis
dc.subject.otherCPA
dc.subject.otherDCE-MRI
dc.titleAdvanced MRI to differentiate schwannomas and metastases in the cerebellopontine angle/internal auditory canal
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175205/1/jon13028.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175205/2/jon13028_am.pdf
dc.identifier.doi10.1111/jon.13028
dc.identifier.sourceJournal of Neuroimaging
dc.identifier.citedreferenceOta Y, Liao E, Kurokawa R, et al. Diffusion-weighted and dynamic contrast-enhanced MRI to assess radiation therapy response for head and neck paragangliomas. J Neuroimaging. 2021; 31: 1035 - 43.
dc.identifier.citedreferenceBonneville F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesions: an update. Part 1: enhancing extra-axial lesions. Eur Radiol. 2007; 17: 2472 - 82.
dc.identifier.citedreferenceLin EP, Crane BT. The management and imaging of vestibular schwannomas. AJNR Am J Neuroradiol. 2017; 38: 2034 - 43.
dc.identifier.citedreferenceBonneville F, Sarrazin JL, Marsot-Dupuch K, et al. Unusual lesions of the cerebellopontine angle: a segmental approach. Radiographics. 2001; 21: 419 - 38.
dc.identifier.citedreferenceSkolnik AD, Loevner LA, Sampathu DM, et al. Cranial nerve schwannomas: diagnostic imaging approach. Radiographics. 2016; 36: 1463 - 77.
dc.identifier.citedreferenceChiong Y, Mulroy L, Fleetwood IG, et al. Isolated metastasis to the cerebellopontine angle secondary to breast cancer. Can J Surg. 2009; 52: E213 - 4.
dc.identifier.citedreferenceYuh WT, Mayr-Yuh NA, Koci TM, et al. Metastatic lesions involving the cerebellopontine angle. AJNR Am J Neuroradiol. 1993; 14: 99 - 106.
dc.identifier.citedreferenceWarren FM, Shelton C, Wiggins RH 3rd, et al. Imaging characteristics of metastatic lesions to the cerebellopontine angle. Otol Neurotol. 2008; 29: 835 - 8.
dc.identifier.citedreferenceCoy S, Rashid R, Stemmer-Rachamimov A, et al. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 2020; 139: 643 - 65.
dc.identifier.citedreferenceLakshmi M, Glastonbury CM. Imaging of the cerebellopontine angle. Neuroimaging Clin N Am. 2009; 19: 393 - 406.
dc.identifier.citedreferenceOta Y, Liao E, Capizzano AA, et al. Neurofibromatosis type 2 versus sporadic vestibular schwannoma: the utility of MR diffusion and dynamic contrast-enhanced imaging. J Neuroimaging. 2022; 32: 554 - 60.
dc.identifier.citedreferenceGaddikeri S, Gaddikeri RS, Tailor T, et al. Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications. AJNR Am J Neuroradiol. 2016; 37: 588 - 95.
dc.identifier.citedreferenceSurov A, Meyer HJ, Wienke A. Apparent Diffusion coefficient for distinguishing between malignant and benign lesions in the head and neck region: a systematic review and meta-analysis. Front Oncol. 2019; 9: 1362.
dc.identifier.citedreferenceOta Y, Liao E, Capizzano AA, et al. MR diffusion and dynamic-contrast enhanced imaging to distinguish meningioma, paraganglioma, and schwannoma in the cerebellopontine angle and jugular foramen. J Neuroimaging. 2022; 32: 502 - 10.
dc.identifier.citedreferenceOta Y, Liao E, Capizzano AA, et al. Diagnostic role of diffusion-weighted and dynamic contrast-enhanced perfusion MR imaging in paragangliomas and schwannomas in the head and neck. AJNR Am J Neuroradiol. 2021; 42: 1839 - 46.
dc.identifier.citedreferenceOta Y, Naganawa S, Kurokawa R, et al. Assessment of MR imaging and CT in differentiating hereditary and nonhereditary paragangliomas. AJNR Am J Neuroradiol. 2021; 42: 1320 - 6.
dc.identifier.citedreferenceOta Y, Moore AG, Spector ME, et al. Prediction of wound failure in patients with head and neck cancer treated with free flap reconstruction: utility of CT perfusion and MR perfusion in the early postoperative period. AJNR Am J Neuroradiol. 2022; 43: 585 - 91.
dc.identifier.citedreferenceTamilchelvan P, Boruah DK, Gogoi BB, et al. Role of MRI in differentiating various posterior cranial fossa space-occupying lesions using sensitivity and specificity: a prospective study. Cureus. 2021; 13: e16336.
dc.identifier.citedreferenceChawla S, Kim S, Dougherty L, et al. Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck. AJR Am J Roentgenol. 2013; 200: 35 - 43.
dc.identifier.citedreferenceChawla S, Loevner LA, Kim SG, et al. Dynamic contrast-enhanced MRI-derived intracellular water lifetime (tau i): a prognostic marker for patients with head and neck squamous cell carcinomas. AJNR Am J Neuroradiol. 2018; 39: 138 - 44.
dc.identifier.citedreferenceYadav P, Jantre M, Thakkar D. Magnetic resonance imaging of cerebellopontine angle lesions. Med J DY Patil Univ. 2015; 8: 751 - 9.
dc.identifier.citedreferenceBehuria S, Rout TK, Pattanayak S. Diagnosis and management of schwannomas originating from the cervical vagus nerve. Ann R Coll Surg Engl. 2015; 97: 92 - 7.
dc.identifier.citedreferenceMehrotra N, Behari S, Pal L, et al. Giant vestibular schwannomas: focusing on the differences between the solid and the cystic variants. Br J Neurosurg. 2008; 22: 550 - 6.
dc.identifier.citedreferenceJung WS, Park CH, Hong CK, et al. Diffusion-weighted imaging of brain metastasis from lung cancer: correlation of MRI parameters with the histologic type and gene mutation status. AJNR Am J Neuroradiol. 2018; 39: 273 - 9.
dc.identifier.citedreferenceHayashida Y, Hirai T, Morishita S, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006; 27: 1419 - 25.
dc.identifier.citedreferenceZakaria R, Das K, Radon M, et al. Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes. BMC Med Imaging. 2014; 14: 26.
dc.identifier.citedreferenceChawla S, Kim S, Wang S, et al. Diffusion-weighted imaging in head and neck cancers. Future Oncol. 2009; 5: 959 - 75.
dc.identifier.citedreferenceMoffat DA, Ballagh RH. Rare tumours of the cerebellopontine angle. Clin Oncol (R Coll Radiol). 1995; 7: 28 - 41.
dc.identifier.citedreferenceHatzoglou V, Tisnado J, Mehta A, et al. Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases. Cancer Med. 2017; 6: 761 - 7.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.