Show simple item record

Dicamba drift alters plant–herbivore interactions at the agro-ecological interface

dc.contributor.authorJohnson, Nia M.
dc.contributor.authorBaucom, Regina S.
dc.date.accessioned2022-12-05T16:40:30Z
dc.date.available2023-12-05 11:40:28en
dc.date.available2022-12-05T16:40:30Z
dc.date.issued2022-11
dc.identifier.citationJohnson, Nia M.; Baucom, Regina S. (2022). "Dicamba drift alters plant–herbivore interactions at the agro-ecological interface." Ecosphere 13(11): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/175218
dc.description.abstractNatural populations evolve in response to biotic and abiotic changes in their environment, which shape species interactions and ecosystem dynamics. Agricultural systems can introduce novel conditions via herbicide exposure to non-crop habitats in surrounding fields. While herbicide drift is known to produce a variety of toxic effects in plants, little is known about its impact on nontarget wildlife species interactions. In a two-year study, we investigated the impact of herbicide drift on plant–herbivore interactions with common weed velvetleaf (Abutlion theophrasti) as the focal species. The findings reveal a significant increase in the phloem-feeding silverleaf whitefly (Bermisia tabaci) abundance on plants exposed to herbicide at drift rates of 0.5% and 1% of the field dose. We also identified a significant phenotypic trade-off between whitefly resistance and herbicide resistance in addition to whitefly resistance and relative growth rate in the presence of dicamba drift after increasing the populations grown in Year 2. In a follow-up greenhouse study, we found evidence that dicamba drift at 0.5% of the field dose significantly increased the average chlorophyll content (in milligrams per square centimeter) along with a positive correlation between whitefly abundance and chlorophyll content. Overall, these findings suggest herbicide exposure to nontarget communities can significantly alter herbivore populations, potentially impacting biodiversity and community dynamics of weed populations found at the agro-ecological interface.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othereco-evolution
dc.subject.otheragroecology
dc.subject.otherecology
dc.subject.otherherbicide drift
dc.subject.otherplant–insect interactions
dc.subject.otherplasticity
dc.titleDicamba drift alters plant–herbivore interactions at the agro-ecological interface
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175218/1/ecs24274_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175218/2/ecs24274.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175218/3/ecs24274-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ecs2.4274
dc.identifier.sourceEcosphere
dc.identifier.citedreferenceMcAdam, S. A. M., M. P. Eléouët, M. Best, T. J. Brodribb, M. C. Murphy, S. D. Cook, M. Dalmais, et al. 2017. “ Linking Auxin with Photosynthetic Rate via Leaf Venation.” Plant Physiology 175: 351 – 60. https://doi.org/10.1104/pp.17.00535.
dc.identifier.citedreferenceMangiafico, S., 2020. rcompanion: Functions to Support Extension Education Program Evaluation. Vienna, Austria: R package version 2.3.25 R Foundation for Staistical Computing.
dc.identifier.citedreferenceMarrs, R. H., and A. J. Frost. 1997. “ A Microcosm Approach to the Detection of the Effects of Herbicide Spray Drift in Plant Communities.” Journal of Environmental Management 50: 369 – 88. https://doi.org/10.1006/jema.1996.9984.
dc.identifier.citedreferenceMarrs, R. H., A. J. Frost, and R. A. Plant. 1991. “ Effects of Herbicide Spray Drift on Selected Species of Nature Conservation Interest: The Effects of Plant Age and Surrounding Vegetation Structure.” Environmental Pollution 69: 223 – 35. https://doi.org/10.1016/0269-7491(91)90146-N.
dc.identifier.citedreferenceMeyer, R. C., M. Steinfath, J. Lisec, M. Becher, H. Witucka-Wall, O. Törjék, O. Fiehn, et al. 2007. “ The Metabolic Signature Related to High Plant Growth Rate in Arabidopsis Thaliana.” PNAS 104: 4759 – 64.
dc.identifier.citedreferenceMoodley, V., A. Gubba, and P. L. Mafongoya. 2019. “ A Survey of Whitefly-Transmitted Viruses 653 on Tomato Crops in South Africa.” Crop Protection 123: 21 – 9. https://doi.org/10.1016/j.cropro.2019.05.018.
dc.identifier.citedreferenceMound, L. A. 1962. “ Studies on the Olfaction and Colour Sensitivity of Bemisia tabaci (Genn.) (Homoptera, 655 Aleyrodidae).” Entomologia Experimentalis et Applicata 5: 99 – 104. https://doi.org/10.1111/j.1570-7458.1962.tb00571.x.
dc.identifier.citedreferenceNational Water-Quality Assessment. 2021. Project, Estimated Annual Agricultural Pesticide Use. Reston, VA: USGS. https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2019&map=DICAMBA&hilo=L&disp=Dicamba.
dc.identifier.citedreferenceNing, W., X. Shi, B. Liu, H. Pan, W. Wei, Y. Zeng, X. Sun, et al. 2015. “ Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype.” Scientific Reports 5 ( 10744 ): 1 – 8. https://doi.org/10.1038/srep10744.
dc.identifier.citedreferencePark, M. K., J. G. Kim, Y. H. Song, J. H. Lee, K. I. Shin, and K. Cho. 2009. “ Effect of Nitrogen Levels of Two Cherry Tomato Cultivars on Development, Preference and Honeydew Production of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).” Journal of Asia-Pacific Entomology 12 ( 4 ): 227 – 32. https://doi.org/10.1016/j.aspen.2009.04.004.
dc.identifier.citedreferenceSchindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, et al. 2012. “ Fiji: An Open-Source Platform for Biological-Image Analysis.” Nature Methods 9: 676 – 82. https://doi.org/10.1038/nmeth.2019.
dc.identifier.citedreferenceSchlinkert, H., C. Westphal, Y. Clough, Z. László, M. Ludwig, and T. Tscharntke. 2015. “ Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.” PLoS One 10(8): e0135928. https://doi.org/10.1371/journal.pone.0135928.
dc.identifier.citedreferenceSchowalter, T. D. 2006. Insect Ecology: An Ecosystem Approach. London: Academic Press.
dc.identifier.citedreferenceSpencer, N. R. 1984. “ Velvetleaf, Abutilon theophrasti (Malvaceae), History and Economic Impact in the United States.” Economic Botany 38: 407 – 16. https://doi.org/10.1007/BF02859079.
dc.identifier.citedreferenceSundararaj, R., and K. Selvaraj. 2017. “ Invasion of Rugose Spiraling Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae): A Potential Threat to Coconut in India.” Phytoparasitica 45: 71 – 4. https://doi.org/10.1007/s12600-017-0567-0.
dc.identifier.citedreferenceThompson, J. N. 1999. “ The Evolution of Species Interactions.” Science 284: 2116 – 8. https://doi.org/10.1126/science.284.5423.2116.
dc.identifier.citedreferenceTurgut, C. 2007. “ The Impact of Pesticides Toward Parrotfeather When Applied at the Predicted Environmental Concentration.” Chemosphere 66 ( 3 ): 469 – 73. https://doi.org/10.1016/j.chemosphere.2006.05.073.
dc.identifier.citedreferenceTsueda, H., T. Tsuduki, and K. Tsuchida. 2014. “ Factors That Affect the Selection of Tomato Leaflets by Two Whiteflies, Trialeurodes vaporariorum and Bemisia tabaci (Homoptera: Aleyrodidae).” Applied Entomology and Zoology 49: 561 – 70. https://doi.org/10.1007/s13355-014-0287-6.
dc.identifier.citedreferenceUSDA ERS. 2019. “ Recent Trends in GE Adoption.” United States Geological Survey. https://www-ers-usda-gov.proxy.lib.umich.edu/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx.
dc.identifier.citedreferenceVan Lenterern, J. C., and L. P. J. J. Noldus. 1990. “ Whitefly-Plant Relationships: Behavioral and Ecological Aspects.” In Whiteflies: Their Bionomics, Pest Status and Management, edited by D. Gerling, 47 – 9. Andover: Intercept.
dc.identifier.citedreferenceVieira, B. C., J. D. Luck, K. L. Amundsen, R. Werle, T. A. Gaines, and G. R. Kruger. 2020. “ Herbicide Drift Exposure Leads to Reduced Herbicide Sensitivity in Amaranthus Spp.” Scientific Reports 10: 2146. https://doi.org/10.1038/s41598-020-59126-9.
dc.identifier.citedreferenceYuan, Y., L. Mei, M. Wu, W. Wei, W. Shan, Z. Gong, Q. Zhang, et al. 2018. “ SlARF10, an Auxin Response Factor, Is Involved in Chlorophyll and Sugar Accumulation during Tomato Fruit Development.” Journal of Experimental Botany 69 ( 22 ): 5507 – 18. https://doi.org/10.1093/jxb/ery328.
dc.identifier.citedreferenceZüst, T., and A. A. Agrawal. 2017. “ Trade-Offs between Plant Growth and Defense against Insect Herbivory: An Emerging Mechanistic Synthesis.” Annual Review of Plant Biology 68: 513 – 34. https://doi.org/10.1146/annurev-arplant-042916-040856.
dc.identifier.citedreferenceArnold, S. J. 2003. “ Performance Surfaces and Adaptive Landscapes.” Integrative and Comparative Biology 43: 367 – 75. https://doi.org/10.1093/icb/43.3.367.
dc.identifier.citedreferenceArnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. “ The Adaptive Landscape as a Conceptual Bridge between Micro- and Macroevolution.” In Microevolution Rate, Pattern, Process, Contemporary Issues in Genetics and Evolution, edited by A. P. Hendry and M. T. Kinnison, 9 – 32. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-010-0585-2_2.
dc.identifier.citedreferenceBanks, C. J. 1954. “ A Method for Estimating Populations and Counting Large Numbers of Aphis Fabae Scop.” Bulletin of Entomological Research 45: 751 – 6.
dc.identifier.citedreferenceBates, D., M. Mächler, B. Bolker, and S. Walker. 2015. “ Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 ( 1 ): 1 – 48. https://doi.org/10.18637/jss.v067.i01.
dc.identifier.citedreferenceBelovsky, G. E., and J. B. Slade. 2000. “ Insect Herbivory Accelerates Nutrient Cycling and Increases Plant Production.” PNAS 97: 14412 – 7.
dc.identifier.citedreferenceBohnenblust, E. W., A. D. Vaudo, J. F. Egan, D. A. Mortensen, and J. F. Tooker. 2016. “ Effects of the Herbicide Dicamba on Nontarget Plants and Pollinator Visitation.” Environmental Toxicology and Chemistry 35: 144 – 51. https://doi.org/10.1002/etc.3169.
dc.identifier.citedreferenceBoutin, C., B. Strandberg, D. Carpenter, S. K. Mathiassen, and P. J. Thomas. 2014. “ Herbicide Impact on Non-Target Plant Reproduction: What Are the Toxicological and Ecological Implications? ” Environmental Pollution 185: 295 – 306. https://doi.org/10.1016/j.envpol.2013.10.009.
dc.identifier.citedreferenceBrowne, F. B., X. Li, K. J. Price, R. Langemeier, A. S.-S. de Jauregui, J. S. McElroy, Y. Feng, and A. Price. 2020. “ Sequential Applications of Synthetic Auxins and Glufosinate for Escaped Palmer amaranth Control.” Agronomy 10: 1425. https://doi.org/10.3390/agronomy10091425.
dc.identifier.citedreferenceBusi, R., M. M. Vila-Aiub, H. J. Beckie, T. A. Gaines, D. E. Goggin, S. S. Kaundun, M. Lacoste, et al. 2013. “ Herbicide-Resistant Weeds: From Research and Knowledge to Future Needs.” Evolutionary Applications 6: 1218 – 21. https://doi.org/10.1111/eva.12098.
dc.identifier.citedreferenceByrne, D. N., and T. S. Bellows. 1991. “ Whitefly Biology.” Annual Review of Entomology 36 ( 1 ): 431 – 57.
dc.identifier.citedreferenceCarlsen, S. C. K., N. H. Spliid, and B. Svensmark. 2006. “ Drift of 10 Herbicides after Tractor Spray Application. 2. Primary Drift (Droplet Drift).” Chemosphere 64: 778 – 86. https://doi.org/10.1016/j.chemosphere.2005.10.060.
dc.identifier.citedreferenceCebrian, J., and C. M. Duarte. 1994. “ The Dependence of Herbivory on Growth Rate in Natural Plant Communities.” Functional Ecology 8: 518 – 25. https://doi.org/10.2307/2390077.
dc.identifier.citedreferenceCederlund, H. 2017. “ Effects of Spray Drift of Glyphosate on Nontarget Terrestrial Plants—A Critical Review.” Environmental Toxicology and Chemistry 36: 2879 – 86. https://doi.org/10.1002/etc.3925.
dc.identifier.citedreferenceCessna, A. J., T. M. Wolf, G. R. Stephenson, and R. B. Brown. 2005. “ Pesticide Movement to Field Margins: Routes, Impacts and Mitigation.” In Topics in Canadian Weed Science. Vol. 1. Field Boundary Habitats: Implications for Weed, Insect and Disease Management, edited by A. G. Thomas, 69 – 112. Sainte-Anne-de Bellevue: Canadian Weed Science Society.
dc.identifier.citedreferenceCeulemans, T., E. Hulsmans, W. Vanden Ende, and O. Honnay. 2017. “ Nutrient Enrichment Is Associated with Altered Nectar and Pollen Chemical Composition in Succisa pratensis Moench and Increased Larval Mortality of its Pollinator Bombus terrestris L.” PLoS One 12: e0175160. https://doi.org/10.1371/journal.pone.0175160.
dc.identifier.citedreferenceColey, P. D. 1987. “ Interspecific Variation in Plant Anti-Herbivore Properties: The Role of Habitat Quality and Rate of Disturbance.” New Phytologist 106: 251 – 63. https://doi.org/10.1111/j.1469-8137.1987.tb04693.x.
dc.identifier.citedreferenceColey, P. D., J. P. Bryant, and F. S. Chapin. 1985. “ Resource Availability and Plant Antiherbivore Defense.” Science 230: 895 – 9. https://doi.org/10.1126/science.230.4728.895.
dc.identifier.citedreferenceDaily, G. C. 1997. “ Introduction: What Are Ecosystem Services? ” In Nature’s Services: Societal Dependence on Natural Ecosystems, edited by G. C. Daily, 1 – 10. Washington, DC: Island Press.
dc.identifier.citedreferenceEgan, J. F., E. Bohnenblust, S. Goslee, D. Mortensen, and J. Tooker. 2014. “ Herbicide Drift Can Affect Plant and Arthropod Communities.” Agriculture, Ecosystems & Environment 185: 77 – 87. https://doi.org/10.1016/j.agee.2013.12.017.
dc.identifier.citedreferenceEgan, J. F., and D. A. Mortensen. 2012. “ A Comparison of Land-Sharing and Land-Sparing Strategies for Plant Richness Conservation in Agricultural Landscapes.” Ecological Applications 22: 459 – 71. https://doi.org/10.1890/11-0206.1.
dc.identifier.citedreferenceEhrlich, P. R., and P. H. Raven. 1964. “ Butterflies and Plants: A Study in Coevolution.” Evolution 18: 586 – 608. https://doi.org/10.2307/2406212.
dc.identifier.citedreferenceEvans, J. R. 1989. “ Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants.” Oecologia 78: 9 – 19. https://doi.org/10.1007/BF00377192.
dc.identifier.citedreferenceFine, P. V. A., Z. J. Miller, I. Mesones, S. Irazuzta, H. M. Appel, M. H. H. Stevens, I. Sääksjärvi, J. C. Schultz, and P. D. Coley. 2006. “ The Growth-Defense Tradeoff and Habitat Specialization by Plant in Amazonian Forests.” Ecology 87: S150 – 62. https://doi.org/10.1890/00129658(2006)87[150:TGTAHS]2.0.CO;2.
dc.identifier.citedreferenceFletcher, J. S., T. G. Pfleeger, H. C. Ratsch, and R. Hayes. 1996. “ Potential Impact of Low Levels of Chlorsulfuron and Other Herbicides on Growth and Yield of Nontarget Plants.” Environmental Toxicology and Chemistry 15: 1189 – 96. https://doi.org/10.1002/etc.5620150726.
dc.identifier.citedreferenceForkner, R. E., and M. D. Hunter. 2000. “ What Goes up Must Come down? Nutrient Addition and Predation Pressure on Oak Herbivores.” Ecology 81: 1588 – 600. https://doi.org/10.1890/00129658(2000)081[1588:WGUMCD]2.0.CO;2.
dc.identifier.citedreferenceFreemark, K., and C. Boutin. 1995. “ Impacts of Agricultural Herbicide Use on Terrestrial Wildlife in Temperate Landscapes: A Review with Special Reference to North America.” Agriculture, Ecosystems & Environment 52: 67 – 91. https://doi.org/10.1016/0167-8809(94)00534-L.
dc.identifier.citedreferenceFutuyma, D. J., and A. A. Agrawal. 2009. “ Macroevolution and the Biological Diversity of Plants and Herbivores.” PNAS 106: 18054 – 61. https://doi.org/10.1073/pnas.0904106106.
dc.identifier.citedreferenceGassmann, A. J. 2005. “ Resistance to Herbicide and Susceptibility to Herbivores: Environmental Variation in the Magnitude of an Ecological Trade-off.” Oecologia 145: 575 – 85.
dc.identifier.citedreferenceGianessi, L. P. 2013. “ The Increasing Importance of Herbicides in Worldwide Crop Production.” Pest Management Science 69: 1099 – 105. https://doi.org/10.1002/ps.3598.
dc.identifier.citedreferenceGove, B., S. A. Power, G. P. Buckley, and J. Ghazoul. 2007. “ Effects of Herbicide Spray Drift and Fertilizer Overspread on Selected Species of Woodland Ground Flora: Comparison between Short-Term and Long-Term Impact Assessments and Field Surveys.” Journal of Applied Ecology 44: 374 – 84. https://doi.org/10.1111/j.1365-2664.2007.01261.x.
dc.identifier.citedreferenceGrossmann, K. 2010. “ Auxin Herbicides: Current Status of Mechanism and Mode of Action.” Pest Management Science 66: 113 – 20. https://doi.org/10.1002/ps.1860.
dc.identifier.citedreferenceHaysom, K. A., and J. C. Coulson. 1998. “ The Lepidoptera Fauna Associated with Calluna vulgaris: Effects of Plant Architecture on Abundance and Diversity.” Ecological Entomology 23: 377 – 85. https://doi.org/10.1046/j.1365-2311.1998.00152.x.
dc.identifier.citedreferenceHereford, J., T. F. Hansen, and D. Houle. 2004. “ Comparing Strengths of Directional Selection: How Strong Is Strong? ” Evolution 58: 2133 – 43. https://doi.org/10.1111/j.0014-3820.2004.tb01592.x.
dc.identifier.citedreferenceHintz, S. D. 1971. “Herbicidal Influence on Cereal Grain Aphids in North Dakota.” PhD diss., North Dakota State University.
dc.identifier.citedreferenceHogenhout, S. A., E.-D. Ammar, A. E. Whitfield, and M. G. Redinbaugh. 2008. “ Insect Vector Interactions with Persistently Transmitted Viruses.” Annual Review of Phytopathology 46: 327 – 59. https://doi.org/10.1146/annurev.phyto.022508.092135.
dc.identifier.citedreferenceHunter, M. D. 2001. “ Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions: Effect of Elevated Atmospheric Carbon Dioxide.” Agricultural and Forest Entomology 3: 153 – 9. https://doi.org/10.1046/j.1461-9555.2001.00108.x.
dc.identifier.citedreferenceHuot, B., J. Yao, B. L. Montgomery, and S. Y. He. 2014. “ Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness.” Molecular Plant 7: 1267 – 87. https://doi.org/10.1093/mp/ssu049.
dc.identifier.citedreferenceHusain, M. A., and K. N. Trehan. 1940. “ Final Report on the Scheme of Investigations on the Whitefly on Cotton in the Punjab.” Indian Journal of Agricultural Science 10: 101 – 9.
dc.identifier.citedreferenceIriart, V., R. S. Baucom, and T.-L. Ashman. 2021. “ Herbicides as Anthropogenic Drivers of Eco-Evo Feedbacks in Plant Communities at the Agro-Ecological Interface.” Molecular Ecology 30 ( 21 ): 5406 – 21. https://doi.org/10.1111/mec.15510.
dc.identifier.citedreferenceJaenike, J. 1978. “ On Optimal Oviposition Behavior in Phytophagous Insects.” Theoretical Population Biology 14: 350 – 6. https://doi.org/10.1016/0040-5809(78)90012-6.
dc.identifier.citedreferenceJohnson, N. 2022. “niajohnson1/DicambaDrift_20182019: Dicamba Drift Alters Plant-Herbivore Interactions (v.0.0.1).” Zenodo. Data Set. https://doi.org/10.5281/zenodo.7017181.
dc.identifier.citedreferenceJohnson, M. T. J., A. A. Agrawal, J. L. Maron, and J.-P. Salminen. 2009. “ Heritability, Covariation and Natural Selection on 24 Traits of Common Evening Primrose ( Oenothera biennis ) from a Field Experiment.” Journal of Evolutionary Biology 22: 1295 – 307. https://doi.org/10.1111/j.1420-9101.2009.01747.x.
dc.identifier.citedreferenceKempema, L. A., X. Cui, F. M. Holzer, and L. L. Walling. 2007. “ Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids.” Plant Physiology 143: 849 – 65. https://doi.org/10.1104/pp.106.090662.
dc.identifier.citedreferenceKlanderud, K., V. Vandvik, and D. Goldberg. 2015. “ The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.” PLoS One 10 ( 6 ): e0130205. https://doi.org/10.1371/journal.pone.0130205.
dc.identifier.citedreferenceLegg, J. P., R. Shirima, L. S. Tajebe, D. Guastella, S. Boniface, S. Jeremiah, E. Nsami, P. Chikoti, and C. Rapisarda. 2014. “ Biology and Management of Bemisia Whitefly Vectors of Cassava Virus Pandemics in Africa.” Pest Management Science 70: 1446 – 53. https://doi.org/10.1002/ps.3793.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.