Show simple item record

Use of blood pressure measurements extracted from the electronic health record in predicting Alzheimer’s disease: A retrospective cohort study at two medical centers

dc.contributor.authorTjandra, Donna
dc.contributor.authorMigrino, Raymond Q.
dc.contributor.authorGiordani, Bruno
dc.contributor.authorWiens, Jenna
dc.date.accessioned2022-12-05T16:40:32Z
dc.date.available2023-12-05 11:40:31en
dc.date.available2022-12-05T16:40:32Z
dc.date.issued2022-11
dc.identifier.citationTjandra, Donna; Migrino, Raymond Q.; Giordani, Bruno; Wiens, Jenna (2022). "Use of blood pressure measurements extracted from the electronic health record in predicting Alzheimer’s disease: A retrospective cohort study at two medical centers." Alzheimer’s & Dementia 18(11): 2368-2372.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/175219
dc.description.abstractIntroductionStudies investigating the relationship between blood pressure (BP) measurements from electronic health records (EHRs) and Alzheimer’s disease (AD) rely on summary statistics, like BP variability, and have only been validated at a single institution. We hypothesize that leveraging BP trajectories can accurately estimate AD risk across different populations.MethodsIn a retrospective cohort study, EHR data from Veterans Affairs (VA) patients were used to train and internally validate a machine learning model to predict AD onset within 5 years. External validation was conducted on patients from Michigan Medicine (MM).ResultsThe VA and MM cohorts included 6860 and 1201 patients, respectively. Model performance using BP trajectories was modest but comparable (area under the receiver operating characteristic curve [AUROC] = 0.64 [95% confidence interval (CI) = 0.54–0.73] for VA vs. AUROC = 0.66 [95% CI = 0.55–0.76] for MM).ConclusionApproaches that directly leverage BP trajectories from EHR data could aid in AD risk stratification across institutions.
dc.publisherWiley
dc.subject.otherblood pressure trajectory
dc.subject.otherAlzheimer’s disease
dc.subject.otherelectronic health record
dc.subject.othermachine learning
dc.subject.otherrisk prediction
dc.titleUse of blood pressure measurements extracted from the electronic health record in predicting Alzheimer’s disease: A retrospective cohort study at two medical centers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175219/1/alz12676.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175219/2/alz12676_am.pdf
dc.identifier.doi10.1002/alz.12676
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceAbell JG, Kivimäki M, Dugravot A, et al. Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. Eur Heart J. 2018; 39 ( 33 ): 3119 – 3125.
dc.identifier.citedreferenceVA Informatics and Computing Infrastructure (VINCI), VA HSR RES 13-457, U.S. Department of Veterans Affairs. ( 2008 ). Retrieved July 15 2021, from https://vaww.VINCI.med.va.gov
dc.identifier.citedreferenceAlzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021; 17 ( 3 ): 327 – 406
dc.identifier.citedreferencePace R, Peters T, Rahme E, Dasgupta K. Validity of health administrative database definitions for hypertension: a systematic review. Can J Cardiol. 2017; 33 ( 8 ): 1052 – 1059.
dc.identifier.citedreferenceTjandra D, Migrino RQ, Giordani B, Wiens J. Cohort discovery and risk stratification for Alzheimer’s disease: an electronic health record-based approach. Alzheimer’s Dement: Transl Res Clin Interv. 2020; 6 ( 1 ): e12035.
dc.identifier.citedreferenceNwabuo CC, Yano Y, Moreira HT, et al. Association between visit-to-visit blood pressure variability in early adulthood and myocardial structure and function in later life. JAMA Cardiol. 2020; 5 ( 7 ): 795 – 801. https://doi.org/10.1001/jamacardio.2020.0799
dc.identifier.citedreferenceHochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9 ( 8 ): 1735 – 1780.
dc.identifier.citedreferenceNinomiya T, Ohara T, Hirakawa Y, et al. Midlife and late-life blood pressure and dementia in Japanese elderly: the Hisayama study. Hypertension. 2011; 58 ( 1 ): 22 – 28.
dc.identifier.citedreferenceLattanzi S, Luzzi S, Provinciali L, Silvestrini M. Blood pressure variability predicts cognitive decline in Alzheimer’s disease patients. Neurobiol Aging. 2014; 35 ( 10 ): 2282 – 2287.
dc.identifier.citedreferenceWijsman LW, De Craen AJ, Muller M, et al. Blood pressure lowering medication, visit-to-visit blood pressure variability, and cognitive function in old age. Am J Hypertens. 2016; 29 ( 3 ): 311 – 318.
dc.identifier.citedreferencede Heus RA, Olde Rikkert MG, Tully PJ, Lawlor BA, Claassen JA, NILVAD Study Group. Blood pressure variability and progression of clinical Alzheimer disease. Hypertension. 2019; 74 ( 5 ): 1172 – 1180.
dc.identifier.citedreferenceKivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001; 322 ( 7300 ): 1447 – 1451.
dc.identifier.citedreferenceYoo JE, Shin DW, Han K, et al. Blood pressure variability and the risk of dementia: A nationwide cohort study. Hypertension, 2020; 75 ( 4 ): 982 – 990.
dc.identifier.citedreferenceMoore PJ, Lyons TJ, Gallacher J, Alzheimer’s Disease Neuroimaging Initiative. Random forest prediction of Alzheimer’s disease using pairwise selection from time series data. PLoS One. 2019; 14 ( 2 ): e0211558.
dc.identifier.citedreferenceTopol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25 ( 1 ): 44 - 56.
dc.identifier.citedreferenceLennon MJ, Makkar SR, Crawford JD, Sachdev PS. Midlife hypertension and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2019; 71 ( 1 ): 307 – 316.
dc.identifier.citedreferenceHanon O, Latour F, Seux ML, et al. Evolution of blood pressure in patients with Alzheimer’s disease: a one year survey of a French Cohort (REAL. FR). J Nutr Health Aging. 2005; 9 ( 2 ): 106.
dc.identifier.citedreferenceNaveed A, Hu YF, Sigwele T, Mohi-Ud-Din G, Susanto M. Similarity analyzer for semantic interoperability of electronic health records using artificial intelligence (AI). J Sci Eng. 2019; 1 ( 2 ): 53 – 58.
dc.identifier.citedreferenceDixon PM. Bootstrap resampling. Encyclopedia of Environmetrics. Wiley. 2006: 212 – 220.
dc.identifier.citedreferenceYano Y. Visit-to-visit blood pressure variability—what is the current challenge? Am J Hypertens. 2017; 30 ( 2 ): 112 – 114.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.