Show simple item record

YfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity

dc.contributor.authorSosa Alfaro, Victor
dc.contributor.authorWaheed, Sodiq O.
dc.contributor.authorPalomino, Hannah
dc.contributor.authorKnorrscheidt, Anja
dc.contributor.authorWeissenborn, Martin
dc.contributor.authorChristov, Christo Z.
dc.contributor.authorLehnert, Nicolai
dc.date.accessioned2022-12-05T16:40:37Z
dc.date.available2023-12-05 11:40:35en
dc.date.available2022-12-05T16:40:37Z
dc.date.issued2022-11-21
dc.identifier.citationSosa Alfaro, Victor; Waheed, Sodiq O.; Palomino, Hannah; Knorrscheidt, Anja; Weissenborn, Martin; Christov, Christo Z.; Lehnert, Nicolai (2022). "YfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity." Chemistry – A European Journal 28(65): n/a-n/a.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/175221
dc.description.abstractCarbene transfer biocatalysis has evolved from basic science to an area with vast potential for the development of new industrial processes. In this study, we show that YfeX, naturally a peroxidase, has great potential for the development of new carbene transferases, due to its high intrinsic reactivity, especially for the N−H insertion reaction of aromatic and aliphatic primary and secondary amines. YfeX shows high stability against organic solvents (methanol and DMSO), greatly improving turnover of hydrophobic substrates. Interestingly, in styrene cyclopropanation, WT YfeX naturally shows high enantioselectivity, generating the trans product with 87 % selectivity for the (R,R) enantiomer. WT YfeX also catalyzes the Si−H insertion efficiently. Steric effects in the active site were further explored using the R232A variant. Quantum Mechanics/Molecular Mechanics (QM/MM) calculations reveal details on the mechanism of Si−H insertion. YfeX, and potentially other peroxidases, are exciting new targets for the development of improved carbene transferases.YfeX, naturally a peroxidase, has great potential for the development of new carbene transferases. WT YfeX catalyzes N−H insertion (including aliphatic and secondary amines) in high yield, cyclopropanation, and most excitingly, Si−H insertion of dimethylphenylsilane. QM/MM calculations reveal details of the mechanism of the unusual Si−H insertion reaction.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherN−H insertion
dc.subject.otherbiocatalysis
dc.subject.othercarbene transfer
dc.subject.othercyclopropanation
dc.subject.otherQM/MM calculations
dc.titleYfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175221/1/chem202201474-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175221/2/chem202201474_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175221/3/chem202201474.pdf
dc.identifier.doi10.1002/chem.202201474
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceW. Smith, T. Forester, J. Mol. Graphics 1996, 14, 136 – 141.
dc.identifier.citedreferenceH. Su, G. Ma, Y. Liu, Inorg. Chem. 2018, 57, 11738 – 11745.
dc.identifier.citedreferenceR. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165 – 169.
dc.identifier.citedreferenceP. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach, C. R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J. Turner, J. Mol. Struct. 2003, 632, 1 – 28.
dc.identifier.citedreferenceD. A. Sharon, D. Mallick, B. Wang, S. Shaik, J. Am. Chem. Soc. 2016, 138, 9597 – 9610.
dc.identifier.citedreferenceX. Li, L. Dong, Y. Liu, Inorg. Chem. 2020, 59, 1622 – 1632.
dc.identifier.citedreferenceX. Ren, R. Fasan, Curr. Opin. Green Sustain. Chem. 2021, 31, 100494.
dc.identifier.citedreferenceK. Oohora, A. Onoda, T. Hayashi, Acc. Chem. Res. 2019, 52, 945 – 954.
dc.identifier.citedreferenceR. L. Khade, Y. Zhang, J. Am. Chem. Soc. 2015, 137, 7560 – 7563.
dc.identifier.citedreferenceH. M. Key, P. Dydio, D. S. Clark, J. F. Hartwig, Nature 2016, 534, 534 – 537.
dc.identifier.citedreferenceGaussView, Version 6, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, USA 2016.
dc.identifier.citedreferenceM. H. Olsson, C. R. Søndergaard, M. Rostkowski, J. H. Jensen, J. Chem. Theory Comput. 2011, 7, 525 – 537.
dc.identifier.citedreferenceP. Li, K. M. Merz   Jr, J. Chem. Inf. Model. 2016, 56, 599– 604.
dc.identifier.citedreferenceJ. M. Seminario, Int. J. Quantum Chem. 1996, 60, 1271 – 1277.
dc.identifier.citedreferenceJ. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247 – 260.
dc.identifier.citedreferenceW. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926 – 935.
dc.identifier.citedreferenceS. O. Waheed, S. S. Chaturvedi, T. G. Karabencheva-Christova, C. Z. Christov, ACS Catal. 2021, 11, 3877 – 3890.
dc.identifier.citedreferenceC. Christov, R. Ramanan, S. O. Waheed, C. J. Schofield, Chem. Eur. J. 2021, 27, 11827 – 11836.
dc.identifier.citedreferenceR. L. Davidchack, T. Ouldridge, M. Tretyakov, J. Chem. Phys. 2015, 142, 144114.
dc.identifier.citedreferenceD. K. Chakravorty, B. Wang, C. W. Lee, A. J. Guerra, D. P. Giedroc, K. M. Merz, J. Biomol. NMR 2013, 56, 125 – 137.
dc.identifier.citedreferenceF. Bresme, J. Chem. Phys. 2001, 115, 7564 – 7574.
dc.identifier.citedreferenceJ.-P. Ryckaert, G. Ciccotti, H. J. Berendsen, J. Comput. Phys. 1977, 23, 327 – 341.
dc.identifier.citedreferenceA. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542 – 1555.
dc.identifier.citedreferenceJ. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, J. Chem. Theory Comput. 2015, 11, 3696 – 3713.
dc.identifier.citedreferenceD. R. Roe, T. E. Cheatham   III, J. Chem. Theory Comput. 2013, 9, 3084 – 3095.
dc.identifier.citedreferenceE. Casali, E. Gallo, L. Toma, Inorg. Chem. 2020, 59, 11329 – 11336.
dc.identifier.citedreferenceJ. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander, P. Sherwood, J. Phys. Chem. A 2009, 113, 11856 – 11865.
dc.identifier.citedreferenceS. R. Billeter, A. J. Turner, W. Thiel, Phys. Chem. Chem. Phys. 2000, 2, 2177 – 2186.
dc.identifier.citedreferenceA. Birch, D. Williamson, Org. React. 2004, 24, 1 – 186.
dc.identifier.citedreferenceX. Lim, Nature News 2016, 537, 156.
dc.identifier.citedreferenceH. Renata, Z. J. Wang, R. Z. Kitto, F. H. Arnold, Catal. Sci. Technol. 2014, 4, 3640 – 3643.
dc.identifier.citedreferenceZ. J. Wang, N. E. Peck, H. Renata, F. H. Arnold, Chem. Sci. 2014, 5, 598 – 601.
dc.identifier.citedreferenceJ. A. McIntosh, P. S. Coelho, C. C. Farwell, Z. J. Wang, J. C. Lewis, T. R. Brown, F. H. Arnold, Angew. Chem. Int. Ed. 2013, 52, 9309 – 9312; Angew. Chem. 2013, 125, 9479 – 9482.
dc.identifier.citedreferenceP. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, Science 2013, 339, 307 – 310.
dc.identifier.citedreferenceP. S. Coelho, Z. J. Wang, M. E. Ener, S. A. Baril, A. Kannan, F. H. Arnold, E. M. Brustad, Nat. Chem. Biol. 2013, 9, 485 – 487.
dc.identifier.citedreferenceM. Bordeaux, V. Tyagi, R. Fasan, Angew. Chem. 2015, 127, 1764 – 1768; Angew. Chem. Int. Ed. 2015, 54, 1744 – 1748.
dc.identifier.citedreferenceY. Wei, A. Tinoco, V. Steck, R. Fasan, Y. Zhang, J. Am. Chem. Soc. 2017, 140, 1649 – 1662.
dc.identifier.citedreferenceK. Shanab, C. Neudorfer, E. Schirmer, H. Spreitzer, Curr. Org. Chem. 2013, 17, 1179 – 1187.
dc.identifier.citedreferenceI. Nicolas, T. Roisnel, P. Le Maux, G. Simonneaux, Tetrahedron Lett. 2009, 50, 5149 – 5151.
dc.identifier.citedreferenceF. P. Caló, A. Zimmer, G. Bistoni, A. Fürstner, J. Am. Chem. Soc. 2022, 144, 7465 – 7478.
dc.identifier.citedreferenceD. Sinou, Metal catalysis in water, Springer 1999.
dc.identifier.citedreferenceI. T. Horvath, P. T. Anastas, Chem. Rev. 2007, 107, 2169 – 2173.
dc.identifier.citedreferenceG. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746 – 1787.
dc.identifier.citedreferenceP. Eilbracht, L. Bärfacker, C. Buss, C. Hollmann, B. E. Kitsos-Rzychon, C. L. Kranemann, T. Rische, R. Roggenbuck, A. Schmidt, Chem. Rev. 1999, 99, 3329 – 3366.
dc.identifier.citedreferenceD. L. Purich, Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods, Elsevier 2010.
dc.identifier.citedreferenceB. Hauer, ACS Catal. 2020, 10, 8418 – 8427.
dc.identifier.citedreferenceS. Chakrabarty, Y. Wang, J. C. Perkins, A. R. Narayan, Chem. Soc. Rev. 2020, 49, 8137 – 8155.
dc.identifier.citedreferenceR. A. Sheldon, D. Brady, Chem. Commun. 2018, 54, 6088 – 6104.
dc.identifier.citedreferenceK. Chen, F. H. Arnold, Nat. Catal. 2020, 3, 203 – 213.
dc.identifier.citedreferenceB. J. Wittmann, A. M. Knight, J. L. Hofstra, S. E. Reisman, S. Jennifer Kan, F. H. Arnold, ACS Catal. 2020, 10, 7112 – 7116.
dc.identifier.citedreferenceP. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, Angew. Chem. 2016, 128, 16344 – 16348; Angew. Chem. Int. Ed. 2016, 55, 16110 – 16114.
dc.identifier.citedreferenceM. J. Weissenborn, R. M. Koenigs, ChemCatChem 2020, 12, 2171 – 2179.
dc.identifier.citedreferenceZ. Liu, F. H. Arnold, Curr. Opin. Biotechnol. 2021, 69, 43 – 51.
dc.identifier.citedreferenceR. Stenner, J. W. Steventon, A. Seddon, J. R. Anderson, Proc. Nat. Acad. Sci. 2020, 117, 1419 – 1428.
dc.identifier.citedreferenceR. A. Sheldon, D. Brady, ChemSusChem 2019, 12, 2859 – 2881.
dc.identifier.citedreferenceM. J. Hernáiz, A. R. Alcántara, J. I. García, J. V. Sinisterra, Chem. Eur. J. 2010, 16, 9422 – 9437.
dc.identifier.citedreferenceS. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354, 1048 – 1051.
dc.identifier.citedreferenceY.-W. Lin, N. Yeung, Y.-G. Gao, K. D. Miner, S. Tian, H. Robinson, Y. Lu, Proc. Nat. Acad. Sci. 2010, 107, 8581 – 8586.
dc.identifier.citedreferenceM. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 21234 – 21239.
dc.identifier.citedreferenceM. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem. Rev. 1996, 96, 2841 – 2887.
dc.identifier.citedreferenceA. Tinoco, V. Steck, V. Tyagi, R. Fasan, J. Am. Chem. Soc. 2017, 139, 5293 – 5296.
dc.identifier.citedreferenceO. F. Brandenberg, R. Fasan, F. H. Arnold, Curr. Opin. Biotechnol. 2017, 47, 102 – 111.
dc.identifier.citedreferenceM. W. Wolf, D. A. Vargas, N. Lehnert, Inorg. Chem. 2017, 56, 5623 – 5635.
dc.identifier.citedreferenceK. Oohora, H. Meichin, L. Zhao, M. W. Wolf, A. Nakayama, J.-y. Hasegawa, N. Lehnert, T. Hayashi, J. Am. Chem. Soc. 2017, 139, 17265 – 17268.
dc.identifier.citedreferenceP. Dydio, H. Key, A. Nazarenko, J.-E. Rha, V. Seyedkazemi, D. Clark, J. Hartwig, Science 2016, 354, 102 – 106.
dc.identifier.citedreferenceT. Hayashi, M. Tinzl, T. Mori, U. Krengel, J. Proppe, J. Soetbeer, D. Klose, G. Jeschke, M. Reiher, D. Hilvert, Nat. Catal. 2018, 1, 578 – 584.
dc.identifier.citedreferenceG. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, ACS Catal. 2017, 7, 7629 – 7633.
dc.identifier.citedreferenceA. L. Chandgude, X. Ren, R. Fasan, J. Am. Chem. Soc. 2019, 141, 9145 – 9150.
dc.identifier.citedreferenceD. A. Vargas, A. Tinoco, V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 2018, 57, 9911 – 9915; Angew. Chem. 2018, 130, 10059 – 10063.
dc.identifier.citedreferenceD. M. Carminati, J. Decaens, S. Couve-Bonnaire, P. Jubault, R. Fasan, Angew. Chem. Int. Ed. 2021, 60, 7072 – 7076.
dc.identifier.citedreferenceL. Villarino, K. E. Splan, E. Reddem, L. Alonso-Cotchico, C. Gutiérrez de Souza, A. Lledós, J. D. Maréchal, A. M. W. Thunnissen, G. Roelfes, Angew. Chem. Int. Ed. 2018, 57, 7785 – 7789; Angew. Chem. 2018, 130, 7911 – 7915.
dc.identifier.citedreferenceA. M. Knight, S. J. Kan, R. D. Lewis, O. F. Brandenberg, K. Chen, F. H. Arnold, ACS Cent. Sci. 2018, 4, 372 – 377.
dc.identifier.citedreferenceD. Nam, A. Tinoco, Z. Shen, R. D. Adukure, G. Sreenilayam, S. D. Khare, R. Fasan, J. Am. Chem. Soc. 2022, 144, 2590 – 2602.
dc.identifier.citedreferenceH. A. Dailey, A. N. Septer, L. Daugherty, D. Thames, S. Gerdes, E. V. Stabb, A. K. Dunn, T. A. Dailey, J. D. Phillips, mBio 2011, 2, e00248 – 00211.
dc.identifier.citedreferenceX. Liu, Z. Yuan, J. Wang, Y. Cui, S. Liu, Y. Ma, L. Gu, S. Xu, Biochem. Biophys. Res. Commun. 2017, 484, 40 – 44.
dc.identifier.citedreferenceV. Pfanzagl, K. Nys, M. Bellei, H. Michlits, G. Mlynek, G. Battistuzzi, K. Djinovic-Carugo, S. Van Doorslaer, P. G. Furtmüller, S. Hofbauer, J. Biol. Chem. 2018, 293, 14823 – 14838.
dc.identifier.citedreferenceM. J. Weissenborn, S. A. Löw, N. Borlinghaus, M. Kuhn, S. Kummer, F. Rami, B. Plietker, B. Hauer, ChemCatChem 2016, 8, 1636 – 1640.
dc.identifier.citedreferenceG. Sreenilayam, R. Fasan, Chem. Commun. 2015, 51, 1532 – 1534.
dc.identifier.citedreferenceV. Steck, G. Sreenilayam, R. Fasan, Synlett 2020, 31, 224 – 229.
dc.identifier.citedreferenceR. D. Lewis, M. Garcia-Borràs, M. J. Chalkley, A. R. Buller, K. Houk, S. J. Kan, F. H. Arnold, Proc. Natl. Acad. Sci. USA 2018, 115, 7308 – 7313.
dc.identifier.citedreferenceE. J. Moore, V. Steck, P. Bajaj, R. Fasan, J. Org. Chem. 2018, 83, 7480 – 7490.
dc.identifier.citedreferenceM. Garcia-Borràs, S. J. Kan, R. D. Lewis, A. Tang, G. Jimenez-Osés, F. H. Arnold, K. N. Houk, J. Am. Chem. Soc. 2021, 143, 7114 – 7123.
dc.identifier.citedreferenceG. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, Adv. Synth. Catal. 2017, 359, 2076 – 2089.
dc.identifier.citedreferenceR. Balhara, R. Chatterjee, G. Jindal, Phys. Chem. Chem. Phys. 2021, 23, 9500 – 9511.
dc.identifier.citedreferenceA. Tinoco, Y. Wei, J.-P. Bacik, D. M. Carminati, E. J. Moore, N. Ando, Y. Zhang, R. Fasan, ACS Catal. 2018, 9, 1514 – 1524.
dc.identifier.citedreferenceR. L. Khade, A. L. Chandgude, R. Fasan, Y. Zhang, ChemCatChem 2019, 11, 3101.
dc.identifier.citedreferenceD. Kruschel, B. Zagrovic, Mol. BioSyst. 2009, 5, 1606 – 1616.
dc.identifier.citedreferenceQ. Cui, M. Karplus, Protein Sci. 2008, 17, 1295 – 1307.
dc.identifier.citedreferenceG. G. Dodson, D. P. Lane, C. S. Verma, EMBO Rep. 2008, 9, 144 – 150.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.