Show simple item record

A global analysis of viviparity in squamates highlights its prevalence in cold climates

dc.contributor.authorZimin, Anna
dc.contributor.authorZimin, Sean V.
dc.contributor.authorShine, Richard
dc.contributor.authorAvila, Luciano
dc.contributor.authorBauer, Aaron
dc.contributor.authorBöhm, Monika
dc.contributor.authorBrown, Rafe
dc.contributor.authorBarki, Goni
dc.contributor.authorOliveira Caetano, Gabriel Henrique
dc.contributor.authorCastro Herrera, Fernando
dc.contributor.authorChapple, David G.
dc.contributor.authorChirio, Laurent
dc.contributor.authorColli, Guarino R.
dc.contributor.authorDoan, Tiffany M.
dc.contributor.authorGlaw, Frank
dc.contributor.authorGrismer, L. Lee
dc.contributor.authorItescu, Yuval
dc.contributor.authorKraus, Fred
dc.contributor.authorLeBreton, Matthew
dc.contributor.authorMartins, Marcio
dc.contributor.authorMorando, Mariana
dc.contributor.authorMurali, Gopal
dc.contributor.authorNagy, Zoltán T.
dc.contributor.authorNovosolov, Maria
dc.contributor.authorOliver, Paul
dc.contributor.authorPassos, Paulo
dc.contributor.authorPauwels, Olivier S. G.
dc.contributor.authorPincheira-Donoso, Daniel
dc.contributor.authorRibeiro-Junior, Marco Antonio
dc.contributor.authorShea, Glenn
dc.contributor.authorTingley, Reid
dc.contributor.authorTorres-Carvajal, Omar
dc.contributor.authorTrape, Jean-François
dc.contributor.authorUetz, Peter
dc.contributor.authorWagner, Philipp
dc.contributor.authorRoll, Uri
dc.contributor.authorMeiri, Shai
dc.date.accessioned2022-12-05T16:40:44Z
dc.date.available2024-01-05 11:40:42en
dc.date.available2022-12-05T16:40:44Z
dc.date.issued2022-12
dc.identifier.citationZimin, Anna; Zimin, Sean V.; Shine, Richard; Avila, Luciano; Bauer, Aaron; Böhm, Monika ; Brown, Rafe; Barki, Goni; Oliveira Caetano, Gabriel Henrique; Castro Herrera, Fernando; Chapple, David G.; Chirio, Laurent; Colli, Guarino R.; Doan, Tiffany M.; Glaw, Frank; Grismer, L. Lee; Itescu, Yuval; Kraus, Fred; LeBreton, Matthew; Martins, Marcio; Morando, Mariana; Murali, Gopal; Nagy, Zoltán T. ; Novosolov, Maria; Oliver, Paul; Passos, Paulo; Pauwels, Olivier S. G.; Pincheira-Donoso, Daniel ; Ribeiro-Junior, Marco Antonio ; Shea, Glenn; Tingley, Reid; Torres-Carvajal, Omar ; Trape, Jean-François ; Uetz, Peter; Wagner, Philipp; Roll, Uri; Meiri, Shai (2022). "A global analysis of viviparity in squamates highlights its prevalence in cold climates." Global Ecology and Biogeography (12): 2437-2452.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/175223
dc.description.abstractAimViviparity has evolved more times in squamates than in any other vertebrate group; therefore, squamates offer an excellent model system in which to study the patterns, drivers and implications of reproductive mode evolution. Based on current species distributions, we examined three selective forces hypothesized to drive the evolution of squamate viviparity (cold climate, variable climate and hypoxic conditions) and tested whether viviparity is associated with larger body size.LocationGlobal.Time periodPresent day.TaxonSquamata.MethodsWe compiled a dataset of 9061 squamate species, including their distributions, elevation, climate, body mass and reproductive modes. We applied species-level and assemblage-level approaches for predicting reproductive mode, both globally and within biogeographical realms. We tested the relationships of temperature, interannual and intra-annual climatic variation, elevation (as a proxy for hypoxic conditions) and body mass with reproductive mode, using path analyses to account for correlations among the environmental predictors.ResultsViviparity was strongly associated with cold climates at both species and assemblage levels, despite the prevalence of viviparity in some warm climates. Viviparity was not clearly correlated with climatic variability or elevation. The probability of being viviparous exhibited a weak positive correlation with body size.ConclusionsAlthough phylogenetic history is important, potentially explaining the occurrence of viviparous species in regions that are warm at present, current global squamate distribution is characterized by a higher relative abundance of viviparity in cold environments, supporting the prediction of the “cold-climate” hypothesis. The roles of climatic variation and hypoxia are less important and not straightforward. Elevation probably exerts various selective pressures and influences the prevalence of viviparity primarily through its effect on temperature rather than on oxygen concentration.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherviviparity
dc.subject.otherstructural equation modelling
dc.subject.othersquamates
dc.subject.otherreproduction
dc.subject.otherglobal analysis
dc.subject.otherelevation
dc.subject.othercold climate
dc.subject.otherclimatic variability
dc.subject.otherbody size
dc.subject.otherbiogeography
dc.titleA global analysis of viviparity in squamates highlights its prevalence in cold climates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175223/1/geb13598_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175223/2/geb13598.pdf
dc.identifier.doi10.1111/geb.13598
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferencePyron, R. A., & Burbrink, F. T. ( 2014 ). Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology letters, 17, 13 – 21.
dc.identifier.citedreferenceMcPhillips, L. E., Chang, H., Chester, M. V., Depietri, Y., Friedman, E., Grimm, N. B., Kominoski, J. S., McPhearson, T., Méndez-Lázaro, P., Rosi, E. J., & Shafiei Shiva, J. ( 2018 ). Defining extreme events: A cross-disciplinary review. Earth’s Future, 6, 441 – 455.
dc.identifier.citedreferenceMeiri, S. ( 2018 ). Traits of lizards of the world: Variation around a successful evolutionary design. Global Ecology and Biogeography, 27, 1168 – 1172.
dc.identifier.citedreferenceMeiri, S., Brown, J. H., & Sibly, R. M. ( 2012 ). The ecology of lizard reproductive output. Global Ecology and Biogeography, 21, 592 – 602.
dc.identifier.citedreferenceMeiri, S., Feldman, A., Schwarz, R., & Shine, R. ( 2020 ). Viviparity does not affect the numbers and sizes of reptile offspring. Journal of Animal Ecology, 89, 360 – 369.
dc.identifier.citedreferenceMeiri, S., Meijaard, E., Wich, S. A., Groves, C. P., & Helgen, K. M. ( 2008 ). Mammals of Borneo—Small size on a large Island. Journal of Biogeography, 35, 1087 – 1094.
dc.identifier.citedreferenceMeiri, S., Murali, G., Zimin, A., Shak, L., Itescu, Y., Caetano, G., & Roll, U. ( 2021 ). Different solutions lead to similar life history traits across the great divides of the amniote tree of life. Journal of Biological Research-Thessaloniki, 28, 1 – 17.
dc.identifier.citedreferenceMooney, H. A. ( 1988 ). Lessons from Mediterranean-climate regions. In E. O. Wilson (Ed.), Biodiversity (pp. 157 – 165 ). National Academy Press.
dc.identifier.citedreferenceMoreno, J., & Møller, A. P. ( 2011 ). Extreme climatic events in relation to global change and their impact on life histories. Current Zoology, 57, 375 – 389.
dc.identifier.citedreferenceNeill, W. T. ( 1964 ). Viviparity in snakes: Some ecological and zoogeographical considerations. The American Naturalist, 98, 35 – 55.
dc.identifier.citedreferenceOdierna, G., Aprea, G., Capriglione, T., & Puky, M. ( 2004 ). Chromosomal evidence for the double origin of viviparity in the European common lizard, Lacerta (zootoca) vivipara. Herpetological Journal, 14, 157 – 160.
dc.identifier.citedreferenceOliver, P. M., & Hugall, A. F. ( 2017 ). Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota. Nature Ecology and Evolution, 1, 1896 – 1902.
dc.identifier.citedreferenceOlson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. ( 2001 ). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51, 933.
dc.identifier.citedreferencePackard, G. C. ( 1966 ). The influence of ambient temperature and aridity on modes of reproduction and excretion of amniote vertebrates. The American Naturalist, 100, 667 – 682.
dc.identifier.citedreferencePackard, G. C., Tracy, C. R., & Roth, J. J. ( 1977 ). The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biological Reviews of the Cambridge Philosophical Society, 52, 71 – 105.
dc.identifier.citedreferenceParadis, E., Claude, J., & Strimmer, K. ( 2004 ). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289 – 290.
dc.identifier.citedreferencePeñalver-Alcázar, M., Romero-Diaz, C., & Fitze, P. S. ( 2015 ). Communal egg-laying in oviparous Zootoca vivipara louislantzi of the Central Pyrenees. Herpetology Notes, 8, 4 – 7.
dc.identifier.citedreferencePettersen, A. K., Feiner, N., Noble, D. W. A., While, G. M., Uller, T., & Cornwallis, C. K. ( 2022 ). Mathernal behavioural thermoregulation facilitated evolutionary transitions from egg laying to live birth (preprint). BioRxiv, 1 – 26, 2021.02.07.430163.
dc.identifier.citedreferencePincheira-Donoso, D., Jara, M., Reaney, A., García-Roa, R., Saldarriaga-Córdoba, M., & Hodgson, D. J. ( 2017 ). Hypoxia and hypothermia as rival agents of selection driving the evolution of viviparity in lizards. Global Ecology and Biogeography, 26, 1238 – 1246.
dc.identifier.citedreferencePincheira-Donoso, D., Tregenza, T., Witt, M. J., & Hodgson, D. J. ( 2013 ). The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Global Ecology and Biogeography, 22, 857 – 867.
dc.identifier.citedreferencePrado, C. P. A., Uetanabaro, M., & Haddad, C. F. B. ( 2005 ). Breeding activity patterns, reproductive modes, and habitat use by anurans (amphibia) in a seasonal environment in the Pantanal, Brazil. Amphibia-Reptilia, 26, 211 – 221.
dc.identifier.citedreferenceQualls, C. P., & Shine, R. ( 1995 ). Maternal body-volume as a constraint on reproductive output in lizards: Evidence from the evolution of viviparity. Oecologia, 103, 73 – 78.
dc.identifier.citedreferenceR Core Team. ( 2022 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
dc.identifier.citedreferenceRenssen, H., & Vandenberghe, J. ( 2003 ). Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the last glaciation. Quaternary Science Reviews, 22, 209 – 223.
dc.identifier.citedreferenceReynolds, J. D., Goodwin, N. B., & Freckleton, R. P. ( 2002 ). Evolutionary transitions in parental care and live bearing in vertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 269 – 281.
dc.identifier.citedreferenceRivas, J. A., & Burghardt, G. M. ( 2001 ). Understanding sexual size dimorphism in snakes: Wearing the snake’s shoes. Animal Behaviour, 62, F1 – F6.
dc.identifier.citedreferenceRobinson, N., Regetz, J., & Guralnick, R. P. ( 2014 ). EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 57 – 67.
dc.identifier.citedreferenceRoll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., Bernard, R., Böhm, M., Castro-Herrera, F., Chirio, L., Collen, B., Colli, G. R., Dabool, L., Das, I., Doan, T. M., Grismer, L. L., Hoogmoed, M., Itescu, Y., Kraus, F., LeBreton, M., … Meiri, S. ( 2017 ). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology and Evolution, 1, 1677 – 1682.
dc.identifier.citedreferenceRosseel, Y. ( 2012 ). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1 – 36.
dc.identifier.citedreferenceSadleir, R. M. F. S. ( 1973 ). The reproduction of vertebrates. Academic Press.
dc.identifier.citedreferenceSanders, K. L., Lee, M. S. Y., Leys, R., Foster, R., & Keogh, S. J. ( 2008 ). Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. Journal of Evolutionary Biology, 21, 682 – 695.
dc.identifier.citedreferenceSchmidt-Nielsen, K. ( 1984 ). Moving on land: Running and jumping. In Scaling: Why is animal size so important? (pp. 165 – 181 ). Cambridge University Press.
dc.identifier.citedreferenceSchulte, J. A., Macey, J. R., Espinoza, R. E., & Larson, A. ( 2000 ). Phylogenetic relationships in the iguanid lizard genus Liolaemus: Multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Journal of the Linnean Society, 69, 75 – 102.
dc.identifier.citedreferenceSchwimmer, H., & Haim, A. ( 2009 ). Physiological adaptations of small mammals to desert ecosystems. Integrative Zoology, 4, 357 – 366.
dc.identifier.citedreferenceShine, R. ( 1980 ). “Costs” of reproduction in reptiles. Oecologia, 46, 92 – 100.
dc.identifier.citedreferenceShine, R. ( 1983 ). Reptilian viviparity in cold climates: Testing the assumptions of an evolutionary hypothesis. Oecologia, 57, 397 – 405.
dc.identifier.citedreferenceShine, R. ( 1985 ). The evolution of viviparity in reptiles: An ecological analysis. In C. Gans & F. Billett (Eds.), Biology of the Reptilia (Vol. 15, pp. 605 – 694 ). Wiley-Interscience.
dc.identifier.citedreferenceShine, R. ( 1987 ). The evolution of viviparity: Ecological correlates of reproductive mode within a genus of Australian snakes ( Pseudechis: Elapidae). Copeia, 1987, 551 – 563.
dc.identifier.citedreferenceShine, R. ( 1995 ). A new hypothesis for the evolution of viviparity in reptiles. American Naturalist, 145, 809 – 823.
dc.identifier.citedreferenceShine, R. ( 2002 ). An empirical test of the “predictability” hypothesis for the evolution of viviparity in reptiles. Journal of Evolutionary Biology, 15, 553 – 560.
dc.identifier.citedreferenceShine, R. ( 2004 ). Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures? Evolution, 58, 1809 – 1818.
dc.identifier.citedreferenceShine, R. ( 2005 ). Life-history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36, 23 – 46.
dc.identifier.citedreferenceShine, R. ( 2014 ). Evolution of an evolutionary hypothesis: A history of changing ideas about the adaptive significance of viviparity in reptiles. Journal of Herpetology, 48, 147 – 161.
dc.identifier.citedreferenceShine, R. ( 2015 ). The evolution of oviparity in squamate reptiles: An adaptationist perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 487 – 492.
dc.identifier.citedreferenceShine, R., & Brown, G. P. ( 2008 ). Adapting to the unpredictable: Reproductive biology of vertebrates in the Australian wet-dry tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 363 – 373.
dc.identifier.citedreferenceShine, R., & Bull, J. J. ( 1979 ). The evolution of live-bearing in lizards and snakes. The American Naturalist, 113, 905 – 923.
dc.identifier.citedreferenceSinervo, B., Hedges, R., & Adolph, S. C. ( 1991 ). Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: Variation among populations. Journal of Experimental Biology, 155, 323 – 336.
dc.identifier.citedreferenceSinervo, B., & Huey, R. B. ( 1990 ). Allometric engineering: An experimental test of the causes of interpopulational differences in performance. Science, 248, 1106 – 1109.
dc.identifier.citedreferenceSkipwith, P. L., Bi, K., & Oliver, P. M. ( 2019 ). Relicts and radiations: Phylogenomics of an Australasian lizard clade with east Gondwanan origins (Gekkota: Diplodactyloidea). Molecular Phylogenetics and Evolution, 140, 106589.
dc.identifier.citedreferenceSmithson, M., & Verkuilen, J. ( 2006 ). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11, 54 – 71.
dc.identifier.citedreferenceSouchet, J., Gangloff, E. J., Micheli, G., Bossu, C., Trochet, A., Bertrand, R., Clobert, J., Calvez, O., Martinez-silvestre, A., Darnet, E., Le Chevalier, H., Guillaume, O., Mossoll-Torres, M., Barthe, L., Pottier, G., Philippe, H., & Aubret, F. ( 2020 ). High-elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integrative Zoology, 15, 544 – 557.
dc.identifier.citedreferenceStute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J. F., Schlosser, P., Broecker, W. S., & Bonani, G. ( 1995 ). Cooling of tropical Brazil (5°C) during the last glacial maximum. Science, 269, 379 – 383.
dc.identifier.citedreferenceTejero-Cicuéndez, H., Tarroso, P., Carranza, S., & Rabosky, D. L. ( 2022 ). Desert lizard diversity worldwide: Effects of environment, time, and evolutionary rate. Global Ecology and Biogeography, 31, 776 – 790.
dc.identifier.citedreferenceTinkle, D. W., & Gibbons, J. W. ( 1977 ). The distribution and evolution of viviparity in reptiles. Miscellaneous Publications Museum of Zoology University of Michigan, 154, 1 – 55.
dc.identifier.citedreferenceTonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. ( 2016 ). Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, 23 – 31.
dc.identifier.citedreferenceUetz, P., Freed, P., Aguilar, R., & Hošek, J. ( 2021 ). The reptile database. Retrieved August 17, 2020, from http://www.reptile-database.org/
dc.identifier.citedreferencevan der Bijl, W. ( 2018 ). Phylopath: Easy phylogenetic path analysis in R. PeerJ, 2018, 4718.
dc.identifier.citedreferenceWatson, C. M., & Cox, C. L. ( 2021 ). Elevation, oxygen, and the origins of viviparity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 336, 457 – 469.
dc.identifier.citedreferenceWatson, C. M., Makowsky, R., & Bagley, J. C. ( 2014 ). Reproductive mode evolution in lizards revisited: Updated analyses examining geographic, climatic and phylogenetic effects support the cold-climate hypothesis. Journal of Evolutionary Biology, 27, 2767 – 2780.
dc.identifier.citedreferenceWebb, J. K., Shine, R., & Christian, K. A. ( 2006 ). The adaptive signigicance of reptilian viviparity in the tropics: Testing the maternal manipulation hypothesis. Evolution, 60, 115 – 122.
dc.identifier.citedreferenceWestoby, M., Leishman, M. R., & Lord, J. M. ( 1995 ). On misinterpreting the “phylogenetic correction.”. Journal of Ecology, 83, 531 – 534.
dc.identifier.citedreferenceWilliams, C. M., Buckley, L. B., Sheldon, K. S., Vickers, M., Pörtner, H. O., Dowd, W. W., Gunderson, A. R., Marshall, K. E., & Stillman, J. H. ( 2016 ). Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integrative and Comparative Biology, 56, 73 – 84.
dc.identifier.citedreferenceWinkworth, R. C., Wagstaff, S. J., Glenny, D., & Lockhart, P. J. ( 2005 ). Evolution of the New Zealand mountain flora: Origins, diversification and dispersal. Organisms Diversity and Evolution, 5, 237 – 247.
dc.identifier.citedreferenceWright, A. M., Lyons, K. M., Brandley, M. C., & Hillis, D. M. ( 2015 ). Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 504 – 516.
dc.identifier.citedreferenceAlencar, L. R. V., Quental, T. B., Grazziotin, F. G., Alfaro, M. L., Martins, M., Venzon, M., & Zaher, H. ( 2016 ). Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution, 105, 50 – 62.
dc.identifier.citedreferenceAubret, F., Bonnet, X., Shine, R., & Maumelat, S. ( 2003 ). Clutch size manipulation, hatching success and offspring phenotype in the ball python ( Python regius ). Biological Journal of the Linnean Society, 78, 263 – 272.
dc.identifier.citedreferenceBaston, D. ( 2021 ). Package “exactextractr”: Fast extraction from Raster datasets using polygons. R package version 0.7.2. https://github.com/isciences/exactextractr
dc.identifier.citedreferenceBlackburn, D. G. ( 1982 ). Evolutionary origins of viviparity in the Reptilia. I. Sauria. Amphibia-Reptilia, 3, 185 – 205.
dc.identifier.citedreferenceBlackburn, D. G. ( 1999 ). Are viviparity and egg-guarding evolutionarily labile in squamates? Herpetologica, 55, 556 – 573.
dc.identifier.citedreferenceBlackburn, D. G. ( 2015a ). Evolution of vertebrate viviparity and specializations for fetal nutrition: A quantitative and qualitative analysis. Journal of Morphology, 276, 961 – 990.
dc.identifier.citedreferenceBlackburn, D. G. ( 2015b ). Evolution of viviparity in squamate reptiles: Reversibility reconsidered. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 473 – 486.
dc.identifier.citedreferenceChapple, D. G., & Hitchmough, R. A. ( 2016 ). Biogeography of New Zealand lizards. In D. G. Chapple (Ed.), New Zealand lizards (pp. 109 – 131 ). Springer.
dc.identifier.citedreferenceConaway, C. H. ( 1971 ). Ecological adaptation and mammalian reproduction. Biology of Reproduction, 4, 239 – 247.
dc.identifier.citedreferenceCopernicus Climate Change Service [C3S]. ( 2017 ). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Retrieved December 20, 2020, from https://cds.climate.copernicus.eu/cdsapp#!/home
dc.identifier.citedreferenceCordero, G. A., Andersson, B. A., Souchet, J., Micheli, G., Noble, D. W. A., Gangloff, E. J., Uller, T., & Aubret, F. ( 2017 ). Physiological plasticity in lizard embryos exposed to high-altitude hypoxia. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 327, 423 – 432.
dc.identifier.citedreferenceCruz, F. B., Moreno Azócar, D. L., Perotti, M. G., Acosta, J. C., Stellatelli, O., Vega, L., Luna, F., Antenucci, D., Abdala, C., & Schulte, J. A. ( 2022 ). The role of climate and maternal manipulation in determining and maintaining reproductive mode in Liolaemus lizards. Journal of Zoology, 317, 1 – 13.
dc.identifier.citedreferenceD’Alba, L., Goldenberg, J., Nallapaneni, A., Parkinson, D. Y., Zhu, C., Vanthournout, B., & Shawkey, M. D. ( 2021 ). Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. Journal of Morphology, 282, 1066 – 1079.
dc.identifier.citedreferenceDas, I. ( 2011 ). A photographic guide to snakes & other reptiles of Borneo ( 2nd ed. ). New Holland Publishers.
dc.identifier.citedreferenceDoody, J. S., Freedberg, S., & Keogh, J. S. ( 2009 ). Communal egg-laying in reptiles and amphibians: Evolutionary patterns and hypotheses. The Quarterly Review of Biology, 84, 229 – 252.
dc.identifier.citedreferenceDormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., & Wilson, R. ( 2007 ). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30, 609 – 628.
dc.identifier.citedreferenceDu, W.-G., Thompson, M. B., & Shine, R. ( 2010 ). Facultative cardiac responses to regional hypoxia in lizard embryos. Comparative Biochemistry and Physiology—A Molecular and Integrative Physiology, 156, 491 – 494.
dc.identifier.citedreferenceEsquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F., & Keogh, J. S. ( 2019 ). How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution, 73, 214 – 230.
dc.identifier.citedreferenceFeldman, A., Bauer, A. M., Castro-Herrera, F., Chirio, L., Das, I., Doan, T. M., Maza, E., Meirte, D., de Campos Nogueira, C., Nagy, Z. T., Torres-Carvajal, O., Uetz, P., & Meiri, S. ( 2015 ). The geography of snake reproductive mode: A global analysis of the evolution of snake viviparity. Global Ecology and Biogeography, 24, 1433 – 1442.
dc.identifier.citedreferenceFeldman, A., Sabath, N., Pyron, R. A., Mayrose, I., & Meiri, S. ( 2016 ). Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecology and Biogeography, 25, 187 – 197.
dc.identifier.citedreferenceFenwick, A. M., Greene, H. W., & Parkinson, C. L. ( 2012 ). The serpent and the egg: Unidirectional evolution of reproductive mode in vipers? Journal of Zoological Systematics and Evolutionary Research, 50, 59 – 66.
dc.identifier.citedreferenceLee, M. S. Y., & Shine, R. ( 1998 ). Reptilian viviparity and Dollo’s law. Evolution, 52, 1441 – 1450.
dc.identifier.citedreferenceFox, S. F., Perea-Fox, S., & Franco, R. C. ( 1994 ). Development of the tail autotomy adaptation in lizards under disparate levels of predation at high and low elevations in Mexico. Southwestern Naturalist, 39, 311 – 322.
dc.identifier.citedreferenceGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. ( 2017 ). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18 – 27.
dc.identifier.citedreferenceGrace, J. B. ( 2006 ). Structural equation modeling and natural systems. Cambridge University Press.
dc.identifier.citedreferenceGrant, P. R., Rosemary Grant, B., Huey, R. B., Johnson, M. T. J., Knoll, A. H., & Schmitt, J. ( 2017 ). Evolution caused by extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 5 – 8.
dc.identifier.citedreferenceGreene, H. W. ( 1970 ). Mode of reproduction in lizards and snakes of the Gomez Farias region, Tamaulipas, Mexico. Copeia, 1970, 565 – 568.
dc.identifier.citedreferenceGriffith, O. W., Blackburn, D. G., Brandley, M. C., Van Dyke, J. U., Whittington, C. M., & Thompson, M. B. ( 2015 ). Ancestral state reconstructions require biological evidence to test evolutionary hypotheses: A case study examining the evolution of reproductive mode in squamate reptiles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 493 – 503.
dc.identifier.citedreferenceGuillette, L. J. ( 1993 ). The evolution of viviparity in lizards. Bioscience, 43, 742 – 751.
dc.identifier.citedreferenceGuillette, L. J., Jones, R. E., Fitzgerald, K. T., & Smith, H. M. ( 1980 ). Evolution of viviparity in the lizard genus Sceloporus. Herpetologica, 36, 201 – 215.
dc.identifier.citedreferenceHarlow, P., & Grigg, G. ( 1984 ). Shivering thermogenesis in a brooding diamond python, Python spilotes spilotes. Copeia, 1984, 959 – 965.
dc.identifier.citedreferenceHodges, W. L. ( 2004 ). Evolution of viviparity in horned lizards ( Phrynosoma ): Testing the cold-climate hypothesis. Journal of Evolutionary Biology, 17, 1230 – 1237.
dc.identifier.citedreferenceHoffmann, A. A., & Sgró, C. M. ( 2011 ). Climate change and evolutionary adaptation. Nature, 470, 479 – 485.
dc.identifier.citedreferenceHorreo, J. L., Jiménez-Valverde, A., & Fitze, P. S. ( 2021 ). Climatic niche differences among Zootoca vivipara clades with different parity modes: Implications for the evolution and maintenance of viviparity. Frontiers in Zoology, 18, 1 – 16.
dc.identifier.citedreferenceHorreo, J. L., Pelaez, M. L., Suárez, T., Breedveld, M. C., Heulin, B., Surget-Groba, Y., Oksanen, T. A., & Fitze, P. S. ( 2018 ). Phylogeography, evolutionary history, and effects of glaciations in a species ( Zootoca vivipara ) inhabiting multiple biogeographic regions. Journal of Biogeography, 45, 1616 – 1627.
dc.identifier.citedreferenceJi, X., Lin, C. X., Lin, L. H., Qiu, Q. B., & Du, Y. ( 2007 ). Evolution of viviparity in warm-climate lizards: An experimental test of the maternal manipulation hypothesis. Journal of Evolutionary Biology, 20, 1037 – 1045.
dc.identifier.citedreferenceKam, Y.-C. ( 1993 ). Physiological effects of hypoxia on metabolism and growth of turtle embryos. Respiration Physiology, 92, 127 – 138.
dc.identifier.citedreferenceKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. ( 2017 ). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 1 – 20.
dc.identifier.citedreferenceKembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. ( 2010 ). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463 – 1464.
dc.identifier.citedreferenceKhavrus, V., & Shelevytsky, I. ( 2012 ). Geometry and the physics of seasons. Physics Education, 47, 680 – 692.
dc.identifier.citedreferenceKing, B., & Lee, M. S. Y. ( 2015 ). Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Systematic Biology, 64, 532 – 544.
dc.identifier.citedreferenceKlein, C. G., Pisani, D., Field, D. J., Lakin, R., Wills, M. A., & Longrich, N. R. ( 2021 ). Evolution and dispersal of snakes across the cretaceous-Paleogene mass extinction. Nature Communications, 12, 1 – 10.
dc.identifier.citedreferenceKörner, C. ( 2007 ). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22, 569 – 574.
dc.identifier.citedreferenceKuchling, G., & Hofmeyr, M. D. ( 2022 ). Too hot to nest? In a hot summer the tortoise Chersina angulata can switch from nesting to facultative viviparity. Frontiers in Ecology and Evolution, 9, 788764.
dc.identifier.citedreferenceKupriyanova, L., Kirschey, T., & Böhme, W. ( 2017 ). Distribution of the common or viviparous lizard, Zootoca vivipara (Lichtenstein, 1823) (Squamata: Lacertidae) in Central Europe and re-colonization of the Baltic Sea basin: New karyological evidence. Russian Journal of Herpetology, 24, 311 – 317.
dc.identifier.citedreferenceLambert, S. M., & Wiens, J. J. ( 2013 ). Evolution of viviparity: A phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards. Evolution, 67, 2614 – 2630.
dc.identifier.citedreferenceLaugen, A. T., Laurila, A., Räsänen, K., & Merilä, J. ( 2003 ). Latitudinal countergradient variation in the common frog ( Rana temporaria ) development rates—Evidence for local adaptation. Journal of Evolutionary Biology, 16, 996 – 1005.
dc.identifier.citedreferenceLe Henanff, M., Meylan, S., & Lourdais, O. ( 2013 ). The sooner the better: Reproductive phenology drives ontogenetic trajectories in a temperate squamate ( Podarcis muralis ). Biological Journal of the Linnean Society, 108, 384 – 395.
dc.identifier.citedreferenceLi, H., Qu, Y.-F., Hu, R.-B., & Ji, X. ( 2009 ). Evolution of viviparity in cold-climate lizards: Testing the maternal manipulation hypothesis. Evolutionary Ecology, 23, 777 – 790.
dc.identifier.citedreferenceLi, X., Wu, P., Ma, L., Huebner, C., Sun, B., & Li, S. ( 2020 ). Embryonic and post-embryonic responses to high-elevation hypoxia in a low-elevation lizard. Integrative Zoology, 15, 338 – 348.
dc.identifier.citedreferenceLillywhite, H. B. ( 2014 ). How snakes work: Structure, function, and behavior of the world’s snakes. Oxford University Press.
dc.identifier.citedreferenceLynch, V. J. ( 2009 ). Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution, 63, 2457 – 2465.
dc.identifier.citedreferenceLynch, V. J., & Wagner, G. P. ( 2010 ). Did egg-laying boas break Dollo’s law? Phylogenetic evidence for reversal to oviparity in sand boas ( Eryx: Boidae). Evolution, 64, 207 – 216.
dc.identifier.citedreferenceMa, L., Buckley, L. B., Huey, R. B., & Du, W. G. ( 2018 ). A global test of the cold-climate hypothesis for the evolution of viviparity of squamate reptiles. Global Ecology and Biogeography, 27, 679 – 689.
dc.identifier.citedreferenceMarkham, C. G. ( 1970 ). Seasonality of precipitation in the United States. Annals of the Association of American Geographers, 60, 593 – 597.
dc.identifier.citedreferenceMarrot, P., Garant, D., & Charmantier, A. ( 2017 ). Multiple extreme climatic events strengthen selection for earlier breeding in a wild passerine. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160372.
dc.identifier.citedreferenceMartin, H. A. ( 2006 ). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, 533 – 563.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.