Show simple item record

Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children

dc.contributor.authorSong, Ashley Y.
dc.contributor.authorBakulski, Kelly
dc.contributor.authorFeinberg, Jason I.
dc.contributor.authorNewschaffer, Craig
dc.contributor.authorCroen, Lisa A.
dc.contributor.authorHertz-Picciotto, Irva
dc.contributor.authorSchmidt, Rebecca J.
dc.contributor.authorFarzadegan, Homayoon
dc.contributor.authorLyall, Kristen
dc.contributor.authorFallin, M. Daniele
dc.contributor.authorVolk, Heather E.
dc.contributor.authorLadd-Acosta, Christine
dc.date.accessioned2022-12-05T16:40:46Z
dc.date.available2024-01-05 11:40:45en
dc.date.available2022-12-05T16:40:46Z
dc.date.issued2022-12
dc.identifier.citationSong, Ashley Y.; Bakulski, Kelly; Feinberg, Jason I.; Newschaffer, Craig; Croen, Lisa A.; Hertz-Picciotto, Irva ; Schmidt, Rebecca J.; Farzadegan, Homayoon; Lyall, Kristen; Fallin, M. Daniele; Volk, Heather E.; Ladd-Acosta, Christine (2022). "Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children." Autism Research 15(12): 2359-2370.
dc.identifier.issn1939-3792
dc.identifier.issn1939-3806
dc.identifier.urihttps://hdl.handle.net/2027.42/175224
dc.description.abstractParental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, “epigenetic clock” algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child’s prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum’s clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = −1.66, 95% CI: −3.28, −0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath’s clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.Lay SummaryParental age is a risk factor for ASD; however, little is known about possible biologic aging changes that contribute to this association. We found that mothers with faster epigenetic aging and fathers with slower epigenetic aging, relative to their chronologic age, were at increased odds of having a child with ASD and/or decreased early learning, at 3 years of age. These findings suggest epigenetic aging in parents may play a role in neurodevelopment and ASD.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherepigenetic age
dc.subject.otherbiologic age
dc.subject.otherDNA methylation
dc.subject.otherparental age
dc.subject.otherage acceleration
dc.subject.otherautism-related traits
dc.subject.otherautism spectrum disorder
dc.titleAssociations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175224/1/aur2822_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175224/2/aur2822.pdf
dc.identifier.doi10.1002/aur.2822
dc.identifier.sourceAutism Research
dc.identifier.citedreferenceLi, Z., Tang, J., Li, H., Chen, S., He, Y., Liao, Y., Wei, Z., Wan, G., Xiang, X., Xia, K., & Chen, X. ( 2014 ). Shorter telomere length in peripheral blood leukocytes is associated with childhood autism. Scientific Reports, 4, 7073.
dc.identifier.citedreferenceHorvath, S. ( 2013 ). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115.
dc.identifier.citedreferenceHorvath, S., Erhart, W., Brosch, M., Ammerpohl, O., Von Schonfels, W., Ahrens, M., Heits, N., Bell, J. T., Tsai, P. C., Spector, T. D., Deloukas, P., Siebert, R., Sipos, B., Becker, T., Rocken, C., Schafmayer, C., & Hampe, J. ( 2014 ). Obesity accelerates epigenetic aging of human liver. Proceedings of the National Academy of Sciences of The United States of America, 111, 15538 – 15543.
dc.identifier.citedreferenceHorvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H., Allayee, H., Ritz, B. R., Chen, B., Lu, A. T., Rickabaugh, T. M., Jamieson, B. D., Sun, D., Li, S., Chen, W., Quintana-Murci, L., Fagny, M., Kobor, M. S., Tsao, P. S., Reiner, A. P., … Assimes, T. L. ( 2016 ). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biology, 17, 171.
dc.identifier.citedreferenceHorvath, S., Langfelder, P., Kwak, S., Aaronson, J., Rosinski, J., Vogt, T. F., Eszes, M., Faull, R. L., Curtis, M. A., Waldvogel, H. J., Choi, O. W., Tung, S., Vinters, H. V., Coppola, G., & Yang, X. W. ( 2016 ). Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY), 8, 1485 – 1512.
dc.identifier.citedreferenceHorvath, S., & Raj, K. ( 2018 ). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19, 371 – 384.
dc.identifier.citedreferenceHorvath, S., & Ritz, B. R. ( 2015 ). Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY), 7, 1130 – 1142.
dc.identifier.citedreferenceHouseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. ( 2012 ). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86.
dc.identifier.citedreferenceIdring, S., Magnusson, C., Lundberg, M., Ek, M., Rai, D., Svensson, A. C., Dalman, C., Karlsson, H., & Lee, B. K. ( 2014 ). Parental age and the risk of autism spectrum disorders: Findings from a Swedish population-based cohort. International Journal of Epidemiology, 43, 107 – 115.
dc.identifier.citedreferenceJohnson, T. E. ( 2006 ). Recent results: Biomarkers of aging. Experimental Gerontology, 41, 1243 – 1246.
dc.identifier.citedreferenceJylhava, J., Pedersen, N. L., & Hagg, S. ( 2017 ). Biological age predictors. EBioMedicine, 21, 29 – 36.
dc.identifier.citedreferenceLadd-Acosta, C., Hansen, K. D., Briem, E., Fallin, M. D., Kaufmann, W. E., & Feinberg, A. P. ( 2014 ). Common DNA methylation alterations in multiple brain regions in autism. Molecular Psychiatry, 19, 862 – 871.
dc.identifier.citedreferenceLee, B. K., & McGrath, J. J. ( 2015 ). Advancing parental age and autism: Multifactorial pathways. Trends in Molecular Medicine, 21, 118 – 125.
dc.identifier.citedreferenceLeppa, V. M., Kravitz, S. N., Martin, C. L., Andrieux, J., Le Caignec, C., Martin-Coignard, D., Dybuncio, C., Sanders, S. J., Lowe, J. K., Cantor, R. M., & Geschwind, D. H. ( 2016 ). Rare inherited and De novo CNVs reveal complex contributions to ASD risk in multiplex families. American Journal of Human Genetics, 99, 540 – 554.
dc.identifier.citedreferenceLevine, M. E., Hosgood, H. D., Chen, B., Absher, D., Assimes, T., & Horvath, S. ( 2015 ). DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging (Albany NY), 7, 690 – 700.
dc.identifier.citedreferenceLevine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. ( 2018 ). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10, 573 – 591.
dc.identifier.citedreferenceLewis, C. R., Taguinod, F., Jepsen, W. M., Cohen, J., Agrawal, K., Huentelman, M. J., Smith, C. J., Ringenbach, S. D. R., & Braden, B. B. ( 2020 ). Telomere length and autism Spectrum disorder within the family: Relationships with cognition and sensory symptoms. Autism Research, 13, 1094 – 1101.
dc.identifier.citedreferenceLord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. ( 1989 ). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185 – 212.
dc.identifier.citedreferenceLu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. ( 2019 ). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11, 303 – 327.
dc.identifier.citedreferenceLyall, K., Croen, L., Daniels, J., Fallin, M. D., Ladd-Acosta, C., Lee, B. K., Park, B. Y., Snyder, N. W., Schendel, D., Volk, H., Windham, G. C., & Newschaffer, C. ( 2017 ). The changing epidemiology of autism Spectrum disorders. Annual Review of Public Health, 38, 81 – 102.
dc.identifier.citedreferenceLyall, K., Song, L., Botteron, K., Croen, L. A., Dager, S. R., Fallin, M. D., Hazlett, H. C., Kauffman, E., Landa, R., Ladd-Acosta, C., Messinger, D. S., Ozonoff, S., Pandey, J., Piven, J., Schmidt, R. J., Schultz, R. T., Stone, W. L., Newschaffer, C. J., & Volk, H. E. ( 2020 ). The association between parental age and autism-related outcomes in children at high familial risk for autism. Autism Research, 13, 998 – 1010.
dc.identifier.citedreferenceMartino, D. J., Tulic, M. K., Gordon, L., Hodder, M., Richman, T. R., Metcalfe, J., Prescott, S. L., & Saffery, R. ( 2011 ). Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics, 6, 1085 – 1094.
dc.identifier.citedreferenceMullen, E. M. ( 1995 ). Mullen scales of early learning (AGS ed.). American Guidance Service Inc.
dc.identifier.citedreferenceNelson, C. A., Varcin, K. J., Coman, N. K., De Vivo, I., & Tager-Flusberg, H. ( 2015 ). Shortened telomeres in families with a propensity to autism. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 588 – 594.
dc.identifier.citedreferenceNevalainen, T., Kananen, L., Marttila, S., Jylhava, J., Mononen, N., Kahonen, M., Raitakari, O. T., Hervonen, A., Jylha, M., Lehtimaki, T., & Hurme, M. ( 2017 ). Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clinical Epigenetics, 9, 20.
dc.identifier.citedreferenceNewschaffer, C. J., Croen, L. A., Fallin, M. D., Hertz-Picciotto, I., Nguyen, D. V., Lee, N. L., Berry, C. A., Farzadegan, H., Hess, H. N., Landa, R. J., Levy, S. E., Massolo, M. L., Meyerer, S. C., Mohammed, S. M., Oliver, M. C., Ozonoff, S., Pandey, J., Schroeder, A., & Shedd-Wise, K. M. ( 2012 ). Infant siblings and the investigation of autism risk factors. Journal of Neurodevelopmental Disorders, 4, 7.
dc.identifier.citedreferenceOzonoff, S., Young, G. S., Belding, A., Hill, M., Hill, A., Hutman, T., Johnson, S., Miller, M., Rogers, S. J., Schwichtenberg, A. J., Steinfeld, M., & Iosif, A. M. ( 2014 ). The broader autism phenotype in infancy: When does it emerge? Journal of the American Academy of Child and Adolescent Psychiatry, 53, 398 – 407.e2.
dc.identifier.citedreferencePerna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K. U., & Brenner, H. ( 2016 ). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 8, 64.
dc.identifier.citedreferenceRoetker, N. S., Pankow, J. S., Bressler, J., Morrison, A. C., & Boerwinkle, E. ( 2018 ). Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC study (atherosclerosis risk in communities). Circulation Genomic and Precision Medicine, 11, e001937.
dc.identifier.citedreferenceRosen, A. D., Robertson, K. D., Hlady, R. A., Muench, C., Lee, J., Philibert, R., Horvath, S., Kaminsky, Z. A., & Lohoff, F. W. ( 2018 ). DNA methylation age is accelerated in alcohol dependence. Translational Psychiatry, 8, 182.
dc.identifier.citedreferenceSandin, S., Schendel, D., Magnusson, P., Hultman, C., Suren, P., Susser, E., Gronborg, T., Gissler, M., Gunnes, N., Gross, R., Henning, M., Bresnahan, M., Sourander, A., Hornig, M., Carter, K., Francis, R., Parner, E., Leonard, H., Rosanoff, M., … Reichenberg, A. ( 2016 ). Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry, 21, 693 – 700.
dc.identifier.citedreferenceSebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y. H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimaki, T., … Wigler, M. ( 2007 ). Strong association of de novo copy number mutations with autism. Science, 316, 445 – 449.
dc.identifier.citedreferenceTeschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-Cabrero, D., & Beck, S. ( 2013 ). A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 29, 189 – 196.
dc.identifier.citedreferenceVirkud, Y. V., Todd, R. D., Abbacchi, A. M., Zhang, Y., & Constantino, J. N. ( 2009 ). Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 150B, 328 – 334.
dc.identifier.citedreferenceWu, S., Wu, F., Ding, Y., Hou, J., Bi, J., & Zhang, Z. ( 2017 ). Advanced parental age and autism risk in children: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 135, 29 – 41.
dc.identifier.citedreferenceZhao, M., Qin, J., Yin, H., Tan, Y., Liao, W., Liu, Q., Luo, S., He, M., Liang, G., Shi, Y., Zhang, Q., Cai, W., Yin, G., Zhou, Y., Wang, J., Li, M., Huang, Y., Liu, A., Wu, H., … Lu, Q. ( 2016 ). Distinct epigenomes in CD4 + T cells of newborns, middle-ages and centenarians. Scientific Reports, 6, 38411.
dc.identifier.citedreferenceAlisch, R. S., Barwick, B. G., Chopra, P., Myrick, L. K., Satten, G. A., Conneely, K. N., & Warren, S. T. ( 2012 ). Age-associated DNA methylation in pediatric populations. Genome Research, 22, 623 – 632.
dc.identifier.citedreferenceAmbatipudi, S., Horvath, S., Perrier, F., Cuenin, C., Hernandez-Vargas, H., Le Calvez-Kelm, F., Durand, G., Byrnes, G., Ferrari, P., Bouaoun, L., Sklias, A., Chajes, V., Overvad, K., Severi, G., Baglietto, L., Clavel-Chapelon, F., Kaaks, R., Barrdahl, M., Boeing, H., … Herceg, Z. ( 2017 ). DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. European Journal of Cancer, 75, 299 – 307.
dc.identifier.citedreferenceAndrews, S. V., Sheppard, B., Windham, G. C., Schieve, L. A., Schendel, D. E., Croen, L. A., Chopra, P., Alisch, R. S., Newschaffer, C. J., Warren, S. T., Feinberg, A. P., Fallin, M. D., & Ladd-Acosta, C. ( 2018 ). Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Molecular Autism, 9, 40.
dc.identifier.citedreferenceAryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. ( 2014 ). Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30, 1363 – 1369.
dc.identifier.citedreferenceAung, M. T., Bakulski, K. M., Feinberg, J. I., Dou, J. F., Meeker, J. D., Mukherjee, B., Loch-Caruso, R., Ladd-Acosta, C., Volk, H. E., Croen, L. A., Hertz-Picciotto, I., Newschaffer, C. J., & Fallin, M. D. ( 2021 ). Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics, 17 ( 3 ), 253 – 268. https://doi.org/10.1080/15592294.2021.1897059
dc.identifier.citedreferenceBakulski, K. M., Dou, J. F., Feinberg, J. I., Aung, M. T., Ladd-Acosta, C., Volk, H. E., Newschaffer, C. J., Croen, L. A., Hertz-Picciotto, I., Levy, S. E., Landa, R., Feinberg, A. P., & Fallin, M. D. ( 2021 ). Autism-associated DNA methylation at birth from multiple tissues is enriched for autism genes in the early autism risk longitudinal investigation. Frontiers in Molecular Neuroscience, 14, 775390.
dc.identifier.citedreferenceBell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., Glass, D., Mangino, M., Zhai, G., Zhang, F., Valdes, A., Shin, S. Y., Dempster, E. L., Murray, R. M., Grundberg, E., Hedman, A. K., Nica, A., Small, K. S., Mu, T. C., Dermitzakis, E. T., … Deloukas, P. ( 2012 ). Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genetics, 8, e1002629.
dc.identifier.citedreferenceBormann, F., Rodriguez-Paredes, M., Hagemann, S., Manchanda, H., Kristof, B., Gutekunst, J., Raddatz, G., Haas, R., Terstegen, L., Wenck, H., Kaderali, L., Winnefeld, M., & Lyko, F. ( 2016 ). Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell, 15, 563 – 571.
dc.identifier.citedreferenceChen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P. C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. ( 2016 ). DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging (Albany NY), 8, 1844 – 1865.
dc.identifier.citedreferenceCicchetti, S. S. S. D. V. ( 1989 ). The Vineland adaptive behavior scales. In Major psychological assessment instruments. Allyn & Bacon.
dc.identifier.citedreferenceDugue, P. A., Bassett, J. K., Joo, J. E., Jung, C. H., Ming Wong, E., Moreno-Betancur, M., Schmidt, D., Makalic, E., Li, S., Severi, G., Hodge, A. M., Buchanan, D. D., English, D. R., Hopper, J. L., Southey, M. C., Giles, G. G., & Milne, R. L. ( 2018 ). DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. International Journal of Cancer, 142, 1611 – 1619.
dc.identifier.citedreferenceDurso, D. F., Bacalini, M. G., Sala, C., Pirazzini, C., Marasco, E., Bonafe, M., Do Valle, I. F., Gentilini, D., Castellani, G., Faria, A. M. C., Franceschi, C., Garagnani, P., & Nardini, C. ( 2017 ). Acceleration of leukocytes’ epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 8, 23237 – 23245.
dc.identifier.citedreferenceFries, G. R., Bauer, I. E., Scaini, G., Wu, M. J., Kazimi, I. F., Valvassori, S. S., Zunta-Soares, G., Walss-Bass, C., Soares, J. C., & Quevedo, J. ( 2017 ). Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Translational Psychiatry, 7, 1283.
dc.identifier.citedreferenceGirard, S. L., Bourassa, C. V., Lemieux Perreault, L. P., Legault, M. A., Barhdadi, A., Ambalavanan, A., Brendgen, M., Vitaro, F., Noreau, A., Dionne, G., Tremblay, R. E., Dion, P. A., Boivin, M., Dube, M. P., & Rouleau, G. A. ( 2016 ). Paternal age explains a major portion of De novo germline mutation rate variability in healthy individuals. PLoS One, 11, e0164212.
dc.identifier.citedreferenceGratten, J., Wray, N. R., Peyrot, W. J., McGrath, J. J., Visscher, P. M., & Goddard, M. E. ( 2016 ). Risk of psychiatric illness from advanced paternal age is not predominantly from De novo mutations. Nature Genetics, 48 ( 7 ), 718 – 724. https://doi.org/10.1038/ng.3577
dc.identifier.citedreferenceGrether, J. K., Anderson, M. C., Croen, L. A., Smith, D., & Windham, G. C. ( 2009 ). Risk of autism and increasing maternal and paternal age in a large north American population. American Journal of Epidemiology, 170, 1118 – 1126.
dc.identifier.citedreferenceHannon, E., Schendel, D., Ladd-Acosta, C., Grove, J. L. P.-B. A. S. D. G., Hansen, C. S., Andrews, S. V., Hougaard, D. M., Bresnahan, M., Mors, O., Hollegaard, M. V., Baekvad-Hansen, M., Hornig, M., Mortensen, P. B., Borglum, A. D., Werge, T., Pedersen, M. G., Nordentoft, M., Buxbaum, J., Daniele Fallin, M., … Mill, J. ( 2018 ). Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Medicine, 10, 19.
dc.identifier.citedreferenceHannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. ( 2013 ). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359 – 367.
dc.identifier.citedreferenceHeyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., Diez, J., Sanchez-Mut, J. V., Setien, F., Carmona, F. J., Puca, A. A., Sayols, S., Pujana, M. A., Serra-Musach, J., Iglesias-Platas, I., Formiga, F., Fernandez, A. F., Fraga, M. F., Heath, S. C., … Esteller, M. ( 2012 ). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of The United States of America, 109, 10522 – 10527.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.