Show simple item record

Unique Dimerization Topology and Countercation Binding Modes in 12-Metallacrown-4 Compounds

dc.contributor.authorSalerno, Elvin V.
dc.contributor.authorFoley, Collin M.
dc.contributor.authorMarzaroli, Vittoria
dc.contributor.authorSchneider, Bernadette L.
dc.contributor.authorSharin, Max D.
dc.contributor.authorKampf, Jeff W.
dc.contributor.authorMarchiò, Luciano
dc.contributor.authorZeller, Matthias
dc.contributor.authorGuillot, Régis
dc.contributor.authorMallah, Talal
dc.contributor.authorTegoni, Matteo
dc.contributor.authorPecoraro, Vincent L.
dc.contributor.authorZaleski, Curtis M.
dc.date.accessioned2022-12-05T16:41:05Z
dc.date.available2023-12-05 11:41:02en
dc.date.available2022-12-05T16:41:05Z
dc.date.issued2022-11-17
dc.identifier.citationSalerno, Elvin V.; Foley, Collin M.; Marzaroli, Vittoria; Schneider, Bernadette L.; Sharin, Max D.; Kampf, Jeff W.; Marchiò, Luciano ; Zeller, Matthias; Guillot, Régis ; Mallah, Talal; Tegoni, Matteo; Pecoraro, Vincent L.; Zaleski, Curtis M. (2022). "Unique Dimerization Topology and Countercation Binding Modes in 12- Metallacrown- 4 Compounds." European Journal of Inorganic Chemistry 2022(32): n/a-n/a.
dc.identifier.issn1434-1948
dc.identifier.issn1099-0682
dc.identifier.urihttps://hdl.handle.net/2027.42/175227
dc.description.abstractSeven dimeric metallacrowns (MC) based on Ln[12-MCM(III)N(shi)-4], where LnIII=Dy, Ho, Yb, or Y, MIII=Mn or Ga, and shi3− is salicylhydroximate, have been synthesized and characterized by single-crystal X-ray diffraction, and for the dysprosium-manganese dimers, the magnetic properties have been measured. In each dimer two Ln[12-MCM(III)N(shi)-4] units are linked by four bridging dicarboxylate anions (isophthalate, trimesate, dinicotinate, or 2,2′-dithiodibenzoate). Three different countercations (sodium, gallium(III), or pyridinium) were used to maintain charge balance of the dimer. While pyridinium does not bind to the dimer, the choice of the dicarboxylate dictates where the countercations Na+ or GaIII bind. With isophthalate and trimesate, the sodium ion binds to the central MC cavity opposite of the LnIII, and with dinicotinate the sodium or gallium(III) ions bind to the pyridyl nitrogen of the dinicotinate. All three Dy2Mn8 dimers exhibit an out-of-phase magnetic susceptibility signal consistent with a shallow barrier to magnetization relaxation.The structures of seven dimeric heterometallic metallacrowns are described. Each dimer consists of two 12-metallacrown-4 units (ring metals Mn3+ or Ga3+) linked together by dicarboxylate anions (isophthalate, trimesate, dinicotinate, or 2,2′-dithiodibenzoate). Each metallacrown unit also contains one lanthanide ion bound to the central cavity. Lastly, the magnetism of the dysprosium-manganese dimers is examined, and each display slow magnetic relaxation.
dc.publisherWiley-VCH Verlap & Co. KGaA
dc.subject.otherMetallacrowns
dc.subject.otherHeterometallic complexes
dc.subject.otherLanthanides
dc.subject.otherMagnetic properties
dc.subject.otherSupramolecular chemistry
dc.titleUnique Dimerization Topology and Countercation Binding Modes in 12-Metallacrown-4 Compounds
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175227/1/ejic202200439_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175227/2/ejic202200439.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175227/3/ejic202200439-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ejic.202200439
dc.identifier.sourceEuropean Journal of Inorganic Chemistry
dc.identifier.citedreferenceM. Perovic, V. Kusigerski, V. Spasojevic, A. Mrakovic, J. Blanusa, M. Zentkova, M. Mihalik, J. Phys. D 2013, 46, 165001.
dc.identifier.citedreferenceC. M. Foley, M. A. Armanious, A. M. Smihosky, M. Zeller, C. M. Zaleski, J. Chem. Crystallogr. 2021, 51, 465 – 482.
dc.identifier.citedreferenceJ. Wang, G. Lu, Y. Liu, S.-G. Wu, G.-Z. Huang, J.-L. Liu, M.-L. Tong, Cryst. Growth Des. 2019, 19, 1896 – 1902.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244 – 247;
dc.identifier.citedreferenceN. E. Brese, M. O′Keeffe, Acta Crystallogr. 1991, B47, 192 – 197;
dc.identifier.citedreferenceW. Liu, H. H. Thorp, Inorg. Chem. 1993, 32, 4102 – 4105;
dc.identifier.citedreferenceA. Trzesowska, R. Kruszynski, T. J. Bartezak, Acta Crystallogr. 2004, B60, 174 – 178.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE, ver. 2.1, Barcelona (Spain), 2013;
dc.identifier.citedreferenceM. Pinsky, D. Avnir, Inorg. Chem. 1998, 37, 5575 – 5582;
dc.identifier.citedreferenceD. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir, S. Alvarez, J. Am. Chem. Soc. 2004, 126, 1755 – 1763;
dc.identifier.citedreferenceJ. Cirera, E. Ruiz, S. Alvarez, Organometallics 2005, 24, 1556 – 1562.
dc.identifier.citedreferenceJ. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078 – 2085.
dc.identifier.citedreferenceC. Loosli, S.-X. Liu, A. Neels, G. Labat, S. Decurtins, Z. Kristallogr. New Cryst. Struct. 2006, 221, 135 – 141.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694 – 8695;
dc.identifier.citedreferenceN. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Phys. Chem. B 2004, 108, 11265 – 11271;
dc.identifier.citedreferenceN. Ishikawa, Y. Mizuno, S. Takamatsu, T. Ishikawa, S. Koshihara, Inorg. Chem. 2008, 47, 10217 – 10219.
dc.identifier.citedreferenceH. C. Brown, D. H. McDaniel, O. Häfliger in Determination of Organic Structures by Physical Methods (Eds.: E. A. Braude, F. C. Nachod ), Academic Press Incs., 1955; pp. 567 – 662.
dc.identifier.citedreferenceBruker, Apex3 V2018.1-0, SAINT V8.38 A, Bruker AXS Inc., Madison (United States of America), 2018.
dc.identifier.citedreferenceL. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3 – 10.
dc.identifier.citedreferenceG. M. Sheldrick, Acta Crystallogr. 2008, A64, 112 – 122.
dc.identifier.citedreferenceG. M. Sheldrick, SHELXL2018, University of Göttingen, Göttingen (Germany), 2018.
dc.identifier.citedreferenceG. M. Sheldrick, Acta Crystallogr. 2015, C71, 3 – 8.
dc.identifier.citedreferenceC. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281 – 1284.
dc.identifier.citedreferenceP. Van Der Sluis, A. L. Spek, Acta Crystallogr. 1990, A46, 194 – 201.
dc.identifier.citedreferenceA. L. Spek, J. Appl. Crystallogr. 2003, 36, 7 – 13.
dc.identifier.citedreferenceA. L. Spek, Acta Crystallogr. 2009, D65, 148 – 155.
dc.identifier.citedreferenceL. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849 – 854.
dc.identifier.citedreferenceA. Lausi, M. Polentarutti, M. S. Onesti, J. R. Plaisier, E. Busetto, G. Bais, L. Barba, A. Cassetta, G. Campi, D. Lamba, A. Pifferi, S. C. Mande, D. D. Sarma, S. M. Sharma, G. Paolucci, Eur. Physiscs J. Plus 2015, 130, 43.
dc.identifier.citedreferenceW. Kabsch, Acta Crystallogr. 2010, D66, 125 – 132.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Acta Crystallogr. 2011, D67, 235 – 242;
dc.identifier.citedreferenceP. R. Evans, G. N. Murshudov, Acta Crystallogr. 2013, D69, 1204 – 1214.
dc.identifier.citedreferenceO. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339 – 341.
dc.identifier.citedreferenceJ. C. Lutter, B. A. Lopez Bermudez, T. N. Nguyen, J. W. Kampf, V. L. Pecoraro, J. Inorg. Biochem. 2019, 192, 119 – 125.
dc.identifier.citedreferenceC. H. Hendon, A. J. Rieth, M. D. Korzyński, M. Dincă, ACS Cent. Sci. 2017, 3, 554 – 563.
dc.identifier.citedreferenceC. Pu, H. Qin, Y. Gao, J. Zhou, P. Wang, X. Peng, J. Am. Chem. Soc. 2017, 139, 3302 – 3311.
dc.identifier.citedreferenceM. P. U. Haris, R. Bakthavatsalam, S. Shaikh, B. P. Kore, D. Moghe, R. G. Gonnade, D. D. Sarma, D. Kabra, J. Kundu, Inorg. Chem. 2018, 57, 13443 – 13452.
dc.identifier.citedreferenceJ. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713 – 1727.
dc.identifier.citedreferenceM. Ostrowska, I. O. Fritsky, E. Gumienna-Kontecka, A. V. Pavlishchuk, Coord. Chem. Rev. 2016, 327–328, 304 – 332.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. S. Lah, V. L. Pecoraro, Comments Inorg. Chem. 1990, 11, 59 – 84;
dc.identifier.citedreferenceG. Mezei, C. M. Zaleski, V. L. Pecoraro, Chem. Rev. 2007, 107, 4933 – 5003.
dc.identifier.citedreferenceJ. J. Bodwin, A. D. Cutland, R. G. Malkani, V. L. Pecoraro, Coord. Chem. Rev. 2001, 216–217, 489 – 512.
dc.identifier.citedreferenceC. Y. Chow, R. Guillot, E. Rivière, J. W. Kampf, T. Mallah, V. L. Pecoraro, Inorg. Chem. 2016, 55, 10238 – 10247.
dc.identifier.citedreferenceT. T. Boron   III, J. C. Lutter, C. I. Daly, C. Y. Chow, A. H. Davis, R. Nimthong, M. Zeller, J. W. Kampf, C. M. Zaleski, V. L. Pecoraro, Inorg. Chem. 2016, 55, 10597 – 10607.
dc.identifier.citedreferenceC. M. Zaleski, J. W. Kampf, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2007, 45, 1954 – 1956.
dc.identifier.citedreferenceC. M. Zaleski, S. Tricard, E. C. Depperman, W. Wernsdorfer, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2011, 50, 11348 – 11352.
dc.identifier.citedreferenceC. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, Angew. Chem. Int. Ed. 2004, 43, 3912 – 3914; Angew. Chem. 2004, 116, 4002 – 4004.
dc.identifier.citedreferenceC. Y. Chow, H. Bolvin, V. E. Campbell, R. Guillot, J. W. Kampf, W. Wernsdorfer, F. Gendron, J. Autschbach, V. L. Pecoraro, T. Mallah, Chem. Sci. 2015, 6, 4148 – 4159.
dc.identifier.citedreferenceP. Happ, C. Plenk, E. Rentschler, Coord. Chem. Rev. 2015, 289–290, 238 – 260.
dc.identifier.citedreferenceY. Pavlyukh, E. Rentschler, H. J. Elmers, W. Hübner, G. Lefkidis, Phys. Rev. B 2018, 97, 1 – 19.
dc.identifier.citedreferenceP. Happ, E. Rentschler, Dalton Trans. 2014, 43, 15308 – 15312.
dc.identifier.citedreferenceS. V. Eliseeva, E. V. Salerno, B. A. Lopez Bermudez, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2020, 142, 16173 – 16176.
dc.identifier.citedreferenceE. R. Trivedi, S. V. Eliseeva, J. Jankolovits, M. M. Olmstead, V. L. Pecoraro, J. Am. Chem. Soc. 2014, 136, 1526 – 1534.
dc.identifier.citedreferenceC. Y. Chow, S. V. Eliseeva, E. R. Trivedi, T. N. Nguyen, J. W. Kampf, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2016, 138, 5100 – 5109.
dc.identifier.citedreferenceT. N. Nguyen, S. V. Eliseeva, C. Y. Chow, J. W. Kampf, S. Petoud, V. L. Pecoraro, Inorg. Chem. Front. 2020, 7, 1553 – 1563.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. N. Nguyen, C. Y. Chow, S. V. Eliseeva, E. R. Trivedi, J. W. Kampf, I. Martinić, S. Petoud, V. L. Pecoraro, Chem. Eur. J. 2018, 24, 1031 – 1035;
dc.identifier.citedreferenceE. V. Salerno, J. Zeler, S. V. Eliseeva, M. A. Hernández-Rodríguez, A. N. Carneiro Neto, S. Petoud, V. L. Pecoraro, L. D. Carlos, Chem. Eur. J. 2020, 26, 13792 – 13796.
dc.identifier.citedreferenceJ. C. Lutter, S. V. Eliseeva, G. Collet, I. Martinic, J. W. Kampf, B. L. Schneider, A. Carichner, J. Sobilo, S. Lerondel, S. Petoud, V. L. Pecoraro, Chem. Eur. J. 2019, 26, 1274 – 1277.
dc.identifier.citedreferenceJ. Jankolovits, C. M. Andolina, J. W. Kampf, K. N. Raymond, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 9660 – 9664; Angew. Chem. 2011, 123, 9834 – 9838.
dc.identifier.citedreferenceJ. Ferrando-Soria, J. Vallejo, M. Castellano, J. Martínez-Lillo, E. Pardo, J. Cano, I. Castro, F. Lloret, R. Ruiz-García, M. Julve, Coord. Chem. Rev. 2017, 339, 17 – 103.
dc.identifier.citedreferenceG. Aromí, F. Luis, O. Roubea, in Lanthanides and Actinides in Molecular Magnetism, (Eds.: R. A. Layfield, M. Murugesu ), Wiley-VCH Verlap & Co. KGaA, Weinheim, Germany, 2015; pp. 185 – 221.
dc.identifier.citedreferenceM. R. Azar, T. T. Boron   III, J. C. Lutter, C. I. Daly, K. A. Zegalia, R. Nimthong, G. M. Ferrence, M. Zeller, J. W. Kampf, V. L. Pecoraro, C. M. Zaleski, Inorg. Chem. 2014, 53, 1729 – 1742.
dc.identifier.citedreferenceF. Cao, R.-M. Wei, J. Li, L. Yang, Y. Han, Y. Song, J. Dou, Inorg. Chem. 2016, 55, 5914 – 5923.
dc.identifier.citedreferenceJ. R. Travis, A. M. Smihosky, A. C. Kauffman, S. E. Ramstrom, A. J. Lewis, S. G. Nagy, R. E. Rheam, M. Zeller, C. M. Zaleski, J. Chem. Crystallogr. 2021, 51, 372 – 393.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.