Show simple item record

Serotonin Transporter Imaging in Multiple System Atrophy and Parkinson’s Disease

dc.contributor.authorChou, Kelvin L.
dc.contributor.authorDayalu, Praveen
dc.contributor.authorKoeppe, Robert A.
dc.contributor.authorGilman, Sid
dc.contributor.authorSpears, C. Chauncey
dc.contributor.authorAlbin, Roger L.
dc.contributor.authorKotagal, Vikas
dc.date.accessioned2022-12-05T16:41:20Z
dc.date.available2023-12-05 11:41:18en
dc.date.available2022-12-05T16:41:20Z
dc.date.issued2022-11
dc.identifier.citationChou, Kelvin L.; Dayalu, Praveen; Koeppe, Robert A.; Gilman, Sid; Spears, C. Chauncey; Albin, Roger L.; Kotagal, Vikas (2022). "Serotonin Transporter Imaging in Multiple System Atrophy and Parkinson’s Disease." Movement Disorders 37(11): 2301-2307.
dc.identifier.issn0885-3185
dc.identifier.issn1531-8257
dc.identifier.urihttps://hdl.handle.net/2027.42/175232
dc.description.abstractBackgroundBoth Parkinson’s disease (PD) and multiple system atrophy (MSA) exhibit degeneration of brainstem serotoninergic nuclei, affecting multiple subcortical and cortical serotoninergic projections. In MSA, medullary serotoninergic neuron pathology is well documented, but serotonin system changes throughout the rest of the brain are less well characterized.ObjectivesTo use serotonin transporter [11C]3-amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-benzonitrile positron emission tomography (PET) to compare serotoninergic innervation in patients with MSA and PD.MethodsWe performed serotonin transporter PET imaging in 18 patients with MSA, 23 patients with PD, and 16 healthy controls to explore differences in brainstem, subcortical, and cortical regions of interest.ResultsPatients with MSA showed lower serotonin transporter distribution volume ratios compared with patients with PD in the medulla, raphe pontis, ventral striatum, limbic cortex, and thalamic regions, but no differences in the dorsal striatal, ventral anterior cingulate, or total cortical regions. Controls showed greater cortical serotonin transporter binding compared with PD or MSA groups but lower serotonin transporter binding in the striatum and other relevant basal ganglia regions. There were no regional differences in binding between patients with MSA–parkinsonian subtype (n = 8) and patients with MSA–cerebellar subtype (n = 10). Serotonin transporter distribution volume ratios in multiple different regions of interest showed an inverse correlation with the severity of Movement Disorders Society Unified Parkinson’s Disease Rating Scale motor score in patients with MSA but not patients with PD.ConclusionsBrainstem and some forebrain subcortical region serotoninergic deficits are more severe in MSA compared with PD and show an MSA-specific correlation with the severity of motor impairments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherserotonin
dc.subject.otherPET imaging
dc.subject.othermultiple system atrophy
dc.subject.other[11C]DASB
dc.subject.otherParkinson disease
dc.titleSerotonin Transporter Imaging in Multiple System Atrophy and Parkinson’s Disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175232/1/mds29220.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175232/2/mds29220_am.pdf
dc.identifier.doi10.1002/mds.29220
dc.identifier.sourceMovement Disorders
dc.identifier.citedreferenceMinoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1994; 35 ( 9 ): 1528 – 1537.
dc.identifier.citedreferenceBenarroch EE, Schmeichel AM, Low PA, Parisi JE. Involvement of medullary serotonergic groups in multiple system atrophy. Ann Neurol 2004; 55 ( 3 ): 418 – 422.
dc.identifier.citedreferenceBenarroch EE, Schmeichel AM, Low PA, Parisi JE. Depletion of putative chemosensitive respiratory neurons in the ventral medullary surface in multiple system atrophy. Brain 2007; 130: 469 – 475.
dc.identifier.citedreferenceWilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin 2018; 18: 630 – 637.
dc.identifier.citedreferenceMaillet A, Krack P, Lhommée E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson’s disease. Brain 2016; 139 ( Pt 9 ): 2486 – 2502.
dc.identifier.citedreferencePolitis M, Loane C, Wu K, Brooks DJ, Piccini P. Serotonergic mediated body mass index changes in Parkinson’s disease. Neurobiol Dis 2011; 43 ( 3 ): 609 – 615.
dc.identifier.citedreferencePerez-Soriano A, Giraldo DM, Rios J, et al. Progression of motor and non-motor symptoms in multiple system atrophy: a prospective study from the Catalan-MSA registry. J Parkinsons Dis 2021; 11 ( 2 ): 685 – 694.
dc.identifier.citedreferenceHoule S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 2000; 27 ( 11 ): 1719 – 1722.
dc.identifier.citedreferenceHummerich R, Reischl G, Ehrlichmann W, Machulla HJ, Heinz A, Schloss P. DASB -in vitro binding characteristics on human recombinant monoamine transporters with regard to its potential as positron emission tomography (PET) tracer. J Neurochem 2004; 90 ( 5 ): 1218 – 1226.
dc.identifier.citedreferenceParsey RV, Kent JM, Oquendo MA, et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry 2006; 59 ( 9 ): 821 – 828.
dc.identifier.citedreferenceGilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008; 71 ( 9 ): 670 – 676.
dc.identifier.citedreferenceHughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55 ( 3 ): 181 – 184.
dc.identifier.citedreferenceKotagal V, Spino C, Bohnen NI, Koeppe R, Albin RL. Serotonin, beta-amyloid, and cognition in Parkinson disease. Ann Neurol 2018; 83 ( 5 ): 994 – 1002.
dc.identifier.citedreferenceKotagal V, Albin RL, Muller ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 2012; 71 ( 4 ): 560 – 568.
dc.identifier.citedreferenceBohnen NI, Albin RL, Koeppe RA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 2006; 26 ( 9 ): 1198 – 1212.
dc.identifier.citedreferenceFrey KA, Minoshima S, Koeppe RA, Kilbourn MR, Berger KL, Kuhl DE. Stereotaxic summation analysis of human cerebral benzodiazepine binding maps. J Cereb Blood Flow Metab 1996; 16 ( 3 ): 409 – 417.
dc.identifier.citedreferenceBuck A, Gucker PM, Schonbachler RD, et al. Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab 2000; 20 ( 2 ): 253 – 262.
dc.identifier.citedreferenceTada M, Kakita A, Toyoshima Y, et al. Depletion of medullary serotonergic neurons in patients with multiple system atrophy who succumbed to sudden death. Brain 2009; 132: 1810 – 1819.
dc.identifier.citedreferenceBenarroch EE, Schmeichel AM, Sandroni P, Parisi JE, Low PA. Rostral raphe involvement in Lewy body dementia and multiple system atrophy. Acta Neuropathol 2007; 114 ( 3 ): 213 – 220.
dc.identifier.citedreferencePrange S, Metereau E, Maillet A, et al. Limbic serotonergic plasticity contributes to the compensation of apathy in early Parkinson’s disease. Mov Disord 2022; 37 ( 6 ): 1211 – 1221.
dc.identifier.citedreferenceDankoski EC, Carroll S, Wightman RM. Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem 2016; 136 ( 6 ): 1131 – 1141.
dc.identifier.citedreferenceWang PS, Yeh CL, Lu CF, Wu HM, Soong BW, Wu YT. The involvement of supratentorial white matter in multiple system atrophy: a diffusion tensor imaging tractography study. Acta Neurol Belg 2017; 117 ( 1 ): 213 – 220.
dc.identifier.citedreferencePolitis M, Wu K, Loane C, et al. Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 2010; 40 ( 1 ): 216 – 221.
dc.identifier.citedreferenceMaillet A, Météreau E, Tremblay L, et al. Serotonergic and dopaminergic lesions underlying parkinsonian neuropsychiatric signs. Mov Disord 2021; 36 ( 12 ): 2888 – 2900.
dc.identifier.citedreferenceFu JF, Klyuzhin I, Liu S, et al. Investigation of serotonergic Parkinson’s disease-related covariance pattern using [(11)C]-DASB/PET. Neuroimage Clin 2018; 19: 652 – 660.
dc.identifier.citedreferencePolitis M, Loane C. Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. Sci World J 2011; 11: 1726 – 1734.
dc.identifier.citedreferenceBraak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24 ( 2 ): 197 – 211.
dc.identifier.citedreferenceGiguere N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol 2018; 9: 455.
dc.identifier.citedreferenceMiguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson’s disease. Front. Neural Circuits 2014; 8: 21.
dc.identifier.citedreferenceValdinocci D, Radford RAW, Goulding M, Hayashi J, Chung RS, Pountney DL. Extracellular interactions of alpha-synuclein in multiple system atrophy. Int J Mol Sci 2018; 19 ( 12 ):4129.
dc.identifier.citedreferencePapp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and shy-Drager syndrome). J Neurol Sci 1989; 94 ( 1–3 ): 79 – 100.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.