Top-down enrichment of oil field microbiomes to limit souring and control oil composition during extraction operations
dc.contributor.author | Hillman, Ethan T. | |
dc.contributor.author | Caceres-Martinez, Louis Edwards | |
dc.contributor.author | Kilaz, Gozdem | |
dc.contributor.author | Solomon, Kevin V. | |
dc.date.accessioned | 2022-12-05T16:41:22Z | |
dc.date.available | 2024-01-05 11:41:21 | en |
dc.date.available | 2022-12-05T16:41:22Z | |
dc.date.issued | 2022-12 | |
dc.identifier.citation | Hillman, Ethan T.; Caceres-Martinez, Louis Edwards ; Kilaz, Gozdem; Solomon, Kevin V. (2022). "Top- down enrichment of oil field microbiomes to limit souring and control oil composition during extraction operations." AIChE Journal 68(12): n/a-n/a. | |
dc.identifier.issn | 0001-1541 | |
dc.identifier.issn | 1547-5905 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/175233 | |
dc.description.abstract | Microbial processes sour oil, corrode equipment, and degrade hydrocarbons at an annual global cost to the oil and gas industry of nearly $2 billion. However, top-down control of these microbial processes can reduce their damage and enhance oil recovery. Here, we screened microbial communities from five oil wells in the Illinois basin and evaluated nutrient injection strategies to control metabolism and community composition. Molasses with molybdate supplementation stimulated gas and organic acid production while suppressing corrosive H2S formation in samples from two wells. These changes were accompanied with significant reshaping of the microbiome community. Simulations of field operations via a lab-scale mini-coreflood validated that oil well microbiomes can be engineered to inhibit deleterious H2S and shape oil hydrocarbon composition in situ. These pilot studies validate the economic potential and sustainability of top-down approaches for microbiome engineering to control microbes in oil extraction and enhance the economic viability of oil recovery. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | cultivation screening | |
dc.subject.other | microbial enhanced oil recovery | |
dc.subject.other | microbiome engineering | |
dc.subject.other | miniature coreflood | |
dc.subject.other | top-down design | |
dc.subject.other | comprehensive 2D-gas chromatography | |
dc.title | Top-down enrichment of oil field microbiomes to limit souring and control oil composition during extraction operations | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175233/1/aic17927.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/175233/2/aic17927_am.pdf | |
dc.identifier.doi | 10.1002/aic.17927 | |
dc.identifier.source | AIChE Journal | |
dc.identifier.citedreference | de Jesus EB, de Andrade Lima LRP, Bernardez LA, Almeida PF. Inhibition of microbial sulfate reduction by molybdate. Braz J Petrol Gas. 2015; 9 ( 3 ): 95 - 106. doi: 10.5419/bjpg2015-0010 | |
dc.identifier.citedreference | Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic h2s production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001; 26 ( 6 ): 350 - 355. doi: 10.1038/sj.jim.7000142 | |
dc.identifier.citedreference | Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. Microbiology. 2019; 165 ( 3 ): 254 - 269. doi: 10.1099/mic.0.000750 | |
dc.identifier.citedreference | Saeed AM, el Shatoury E, Hadid R. Production of molybdenum blue by two novel molybdate-reducing bacteria belonging to the genus Raoultella isolated from Egypt and Iraq. J Appl Microbiol. 2019; 126 ( 6 ): 1722 - 1728. doi: 10.1111/jam.14254 | |
dc.identifier.citedreference | Rahman MF, Rusnam M, Gusmanizar N, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. strain Neni-13. Nova Biotechnol Chim. 2016; 15 ( 2 ): 166 - 181. doi: 10.1515/nbec-2016-0017 | |
dc.identifier.citedreference | Lohmayer R, Kappler A, Lösekann-Behrens T, Planer-Friedrich B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl Environ Microbiol. 2014; 80 ( 10 ): 3141 - 3149. doi: 10.1128/AEM.04220-13 | |
dc.identifier.citedreference | Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013; 15 ( 10 ): 2631 - 2641. doi: 10.1111/1462-2920.12173 | |
dc.identifier.citedreference | El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. J Taibah Univ Sci. 2018; 12 ( 6 ): 711 - 722. doi: 10.1080/16583655.2018.1495869 | |
dc.identifier.citedreference | Sallam A, Steinbüchel A. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Int J Syst Evol Microbiol. 2009; 59 ( 7 ): 1661 - 1665. doi: 10.1099/ijs.0.004986-0 | |
dc.identifier.citedreference | Dennis JJ, Zylstra GJ. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol. 2004; 341 ( 3 ): 753 - 768. doi: 10.1016/j.jmb.2004.06.034 | |
dc.identifier.citedreference | Okoye AU, Chikere CB, Okpokwasili GC. Characterization of potential paraffin wax removing bacteria for sustainable biotechnological application. In: SPE Nigeria Annual International Conference and Exhibition. Vol Day 3 Wed. 2019. 10.2118/198799-MS | |
dc.identifier.citedreference | Speight JG, El-Gendy NS. Chapter 9 – Chemistry of biotransformation. Introduction to Petroleum Biotechnology. Gulf Professional Publishing; 2018: 287 - 359. | |
dc.identifier.citedreference | Alsebri H, Hamad AA, Hassam MM. Biodegradation of petroleum hydrocarbons using indigenous bacterial and actinomycetes cultures. Pak J Biol Sci. 2020; 23 ( 6 ): 726 - 734. | |
dc.identifier.citedreference | Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-east India. Bioresour Technol. 2007; 98 ( 7 ): 1339 - 1345. doi: 10.1016/j.biortech.2006.05.032 | |
dc.identifier.citedreference | Li YP, Pan JC, Ma YL. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1. J Appl Microbiol. 2020; 128 ( 1 ): 151 - 160. doi: 10.1111/jam.14470 | |
dc.identifier.citedreference | Lan G, Fan Q, Liu Y, et al. Effects of the addition of waste cooking oil on heavy crude oil biodegradation and microbial enhanced oil recovery using Pseudomonas sp. SWP- 4. Biochem Eng J. 2015; 103: 219 - 226. doi: 10.1016/j.bej.2015.08.004 | |
dc.identifier.citedreference | Barman SR, Banerjee P, Mukhopadhayay A, Das P. Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: process optimization, and toxicity evaluation. J Environ Chem Eng. 2017; 5 ( 5 ): 4803 - 4812. doi: 10.1016/j.jece.2017.09.012 | |
dc.identifier.citedreference | Samanta SK, Singh O v, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 2002; 20 ( 6 ): 243 - 248. doi: 10.1016/s0167-7799(02)01943-1 | |
dc.identifier.citedreference | Hillman ET, Li M, Hooker CA, Englaender JA, Wheeldon I, Solomon K v. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus. Biotechnol Prog. 2021; 37 ( 5 ): e3172. doi: 10.1002/btpr.3172 | |
dc.identifier.citedreference | RedCorn RM, Hillman ET, Solomon KV, Engelberth AS. Xanthobacter-dominated biofilm as a novel source for high-value rhamnose. Appl Microbiol Biotechnol. 2019; 103 ( 11 ): 4525 - 4538. | |
dc.identifier.citedreference | Walters W, Hyde ER, Berg-lyons D, et al. Improved bacterial 16 S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community analysis. mSystems. 2016; 1 ( 1 ): e0009 - e0015. doi: 10.1128/mSystems.00009-15.Editor | |
dc.identifier.citedreference | Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37 ( 8 ): 852 - 857. doi: 10.1038/s41587-019-0209-9 | |
dc.identifier.citedreference | Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13 ( 7 ): 581 - 583. doi: 10.1038/nmeth.3869 | |
dc.identifier.citedreference | Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41 ( D1 ): 590 - 596. doi: 10.1093/nar/gks1219 | |
dc.identifier.citedreference | Varlet V, Giuliani N, Palmiere C, Maujean G, Augsburger M. Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): application to gaseous samples and gas dissolved in muscle. J Anal Toxicol. 2015; 39 ( 1 ): 52 - 57. doi: 10.1093/jat/bku114 | |
dc.identifier.citedreference | Vozka P, Kilaz G. How to obtain a detailed chemical composition for middle distillates via GC × GC-FID without the need of GC × GC-TOF/MS. Fuel. 2019; 247: 368 - 377. doi: 10.1016/j.fuel.2019.03.009 | |
dc.identifier.citedreference | DNV AS. Energy Transition Outlook 2021 Executive Summary. A Global and Regional Forecast to 2050. 2021: 1 – 282. https://eto.dnv.com/2021 | |
dc.identifier.citedreference | Raffa P. Where is research on fossil fuels going in times of climate change? A perspective on chemical enhanced oil recovery. MRS Commun. 2021; 11 ( 6 ): 716 - 725. doi: 10.1557/s43579-021-00131-y | |
dc.identifier.citedreference | Farajzadeh R, Kahrobaei S, Eftekhari AA, Mjeni RA, Boersma D, Bruining J. Chemical enhanced oil recovery and the dilemma of more and cleaner energy. Sci Rep. 2021; 11 ( 1 ): 829. doi: 10.1038/s41598-020-80369-z | |
dc.identifier.citedreference | Mohsenatabar Firozjaii A, Saghafi HR. Review on chemical enhanced oil recovery using polymer flooding: fundamentals, experimental and numerical simulation. Petroleum. 2020; 6 ( 2 ): 115 - 122. doi: 10.1016/j.petlm.2019.09.003 | |
dc.identifier.citedreference | She H, Kong D, Li Y, Hu Z, Guo H. Recent advance of microbial enhanced oil recovery (MEOR) in China. Geofluids. 2019; 2019: 1 - 16. doi: 10.1155/2019/1871392 | |
dc.identifier.citedreference | Nikolova C, Gutierrez T. Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: current state of knowledge, technological advances and future perspectives. Front Microbiol. 2020; 10 ( 2996 ): 1 - 18. doi: 10.3389/fmicb.2019.02996 | |
dc.identifier.citedreference | Youssef N, Elshahed MS, McInerney MJ. Chapter 6 Microbial processes in oil fields. Culprits, problems, and opportunities. Advances in Applied Microbiology. Vol 66. 1st ed. Elesvier Inc; 2009. doi: 10.1016/S0065-2164(08)00806-X | |
dc.identifier.citedreference | Bermont-Bouis D, Janvier M, Grimont PAD, Dupont I, Vallaeys T. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol. 2007; 102 ( 1 ): 161 - 168. doi: 10.1111/j.1365-2672.2006.03053.x | |
dc.identifier.citedreference | Hubert C, Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol. 2007; 73 ( 8 ): 2644 - 2652. doi: 10.1128/AEM.02332-06 | |
dc.identifier.citedreference | Nazina TN, Sokolova DS, Babich TL, et al. Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery. Microbiology. 2017; 86 ( 6 ): 773 - 785. doi: 10.1134/S0026261717060121 | |
dc.identifier.citedreference | Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N. Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J. 2017; 11 ( 9 ): 2141 - 2154. doi: 10.1038/ismej.2017.78 | |
dc.identifier.citedreference | Daly RA, Borton MA, Wilkins MJ, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol. 2016; 1: 1 - 9. doi: 10.1038/nmicrobiol.2016.146 | |
dc.identifier.citedreference | Nazina T, Sokolova D, Grouzdev D, et al. The potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustainability (Switzerland). 2020; 12 ( 15 ): 1 - 23. doi: 10.3390/SU12010015 | |
dc.identifier.citedreference | Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature. 2003; 426 ( 6964 ): 344 - 352. doi: 10.1038/nature02134 | |
dc.identifier.citedreference | van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003; 67 ( 4 ): 503 - 549. doi: 10.1128/mmbr.67.4.503-549.2003 | |
dc.identifier.citedreference | Klueglein N, Kögler F, Adaktylou IJ, et al. Understanding selective plugging and biofilm formation of a halophilic bacterial community for MEOR application. In: Society of Petroleum Engineers Improved Oil Recovery Conference. Vol All Days. SPE Improved Oil Recovery Conference. 2016. 10.2118/179620-MS | |
dc.identifier.citedreference | Lazar I, Petrisor IG, Yen TF. Microbial enhanced oil recovery. Pet Sci Technol. 2007; 25: 1353 - 1366. doi: 10.1016/S0376-7361(09)70098-6 | |
dc.identifier.citedreference | Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: current applications and its future. Biotechnol J. 2017; 12 ( 3 ): 1 - 9. doi: 10.1002/biot.201600099 | |
dc.identifier.citedreference | Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021; 39 ( 3 ): 244 - 261. doi: 10.1016/j.tibtech.2020.07.008 | |
dc.identifier.citedreference | Lee ED, Aurand ER, Friedman DC, Group EBRCMRW. Engineering microbiomes—looking ahead. ACS Synth Biol. 2020; 9 ( 12 ): 3181 - 3183. | |
dc.identifier.citedreference | Lawson CE, Harcombe WR, Hatzenpichler R, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019; 17 ( 12 ): 725 - 741. doi: 10.1038/s41579-019-0255-9 | |
dc.identifier.citedreference | Youssef N, Simpson DR, Duncan KE, et al. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol. 2007; 73 ( 4 ): 1239 - 1247. doi: 10.1128/AEM.02264-06 | |
dc.identifier.citedreference | Yue M, Zhu W, Song Z, Long Y, Song H. Study on distribution of reservoir endogenous microbe and oil displacement mechanism. Saudi J Biol Sci. 2017; 24 ( 2 ): 263 - 267. doi: 10.1016/j.sjbs.2016.09.014 | |
dc.identifier.citedreference | Lin X, Zheng X, Liu R, et al. Extracellular polymeric substances production by ZL-02 for microbial enhanced oil recovery. Ind Eng Chem Res. 2021; 60 ( 2 ): 842 - 850. doi: 10.1021/acs.iecr.0c05130 | |
dc.identifier.citedreference | Quraishi M, Bhatia SK, Pandit S, et al. Exploiting microbes in the petroleum field: analyzing the credibility of microbial enhanced oil recovery (MEOR). Energies (Basel). 2021; 14 ( 4684 ): 1 - 30. | |
dc.identifier.citedreference | Diaz-Colunga J, Lu N, Sanchez-Gorostiaga A, et al. Top-down and bottom-up cohesiveness in microbial community coalescence. Proc Natl Acad Sci U S A. 2022; 119 ( 6 ): 1 - 11. doi: 10.1073/pnas.2111261119 | |
dc.identifier.citedreference | Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2018; 49: 129 - 139. doi: 10.1016/j.copbio.2017.08.008 | |
dc.identifier.citedreference | Amor DR, Bello MD. Bottom-up approaches to synthetic cooperation in microbial communities. Life. 2019; 9 ( 22 ): 1 - 17. doi: 10.3390/life9010022 | |
dc.identifier.citedreference | Lindemann SR, Bernstein HC, Song HS, et al. Engineering microbial consortia for controllable outputs. ISME J. 2016; 10 ( 9 ): 2077 - 2084. doi: 10.1038/ismej.2016.26 | |
dc.identifier.citedreference | Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. Genetically stable CRISPR-based kill switches for engineered microbes. Nat Commun. 2022; 13 ( 1 ): 1 - 17. doi: 10.1038/s41467-022-28163-5 | |
dc.identifier.citedreference | Gilmore SP, Lankiewicz TS, Wilken SE, et al. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synth Biol. 2019; 8 ( 9 ): 2174 - 2185. doi: 10.1021/acssynbio.9b00271 | |
dc.identifier.citedreference | Pacheco AR, Osborne ML, Segrè D. Non-additive microbial community responses to environmental complexity. Nat Commun. 2021; 12 ( 1 ): 1 - 11. doi: 10.1038/s41467-021-22426-3 | |
dc.identifier.citedreference | Portwood JT. A commercial microbial enhanced oil recovery technology: evaluation of 322 projects. In: Society of Petroleum Engineers Production Operations Symposium. SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium. 1995. 10.2118/29518-MS | |
dc.identifier.citedreference | Nikolova C, Gutierrez T. Marine hydrocarbon-degrading bacteria: their role and application in oil-spill response and enhanced oil recovery. Microbial Biodegradation and Bioremediation. Springer; 2022. doi: 10.1016/b978-0-323-85455-9.00005-9 | |
dc.identifier.citedreference | Zahner RLL, Tapper SJJ, Marcotte BWGWG, Govreau BRR. Lessons learned from applications of a new organic-oil-recovery method that activates resident microbes. SPE Reservoir Eval Eng. 2012; 15 ( 6 ): 688 - 694. | |
dc.identifier.citedreference | Chai LJ, Zhang F, She YH, Banat IM, Hou DJ. Impact of a microbial-enhanced oil recovery field trial on microbial communities in a low-temperature heavy oil reservoir. Nat Environ Pollut Technol. 2015; 14 ( 3 ): 455 - 462. | |
dc.identifier.citedreference | Zhan Y, Wang Q, Chen C, et al. Potential of wheat bran to promote indigenous microbial enhanced oil recovery. J Ind Microbiol Biotechnol. 2017; 44 ( 6 ): 845 - 855. doi: 10.1007/s10295-017-1909-0 | |
dc.identifier.citedreference | Yao CJ, Lei GL, Ma JY, Zhao FM, Cao GZ. Experiment and simulation of indigenous microbial enhanced oil recovery (IMEOR). International Petroleum Technology Conference, IPTC. 2011: 1 – 12. | |
dc.identifier.citedreference | Kögler F, Hartmann FSF, Schulze-Makuch D, Herold A, Alkan H, Dopffel N. Inhibition of microbial souring with molybdate and its application under reservoir conditions. Int Biodeterior Biodegrad. 2021; 157: 105158. doi: 10.1016/j.ibiod.2020.105158 | |
dc.identifier.citedreference | Sen R. Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci. 2008; 34 ( 6 ): 714 - 724. doi: 10.1016/j.pecs.2008.05.001 | |
dc.identifier.citedreference | Safdel M, Anbaz MA, Daryasafar A, Jamialahmadi M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renew Sustain Energy Rev. 2017; 74: 159 - 172. doi: 10.1016/j.rser.2017.02.045 | |
dc.identifier.citedreference | Anantharaman K, Hausmann B, Jungbluth SP, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018; 12 ( 7 ): 1715 - 1728. doi: 10.1038/s41396-018-0078-0 | |
dc.identifier.citedreference | Rojas CA, de Santiago TA, Park S, Bosak T, Klepac-Ceraj V. Organic electron donors and terminal electron acceptors structure anaerobic microbial communities and interactions in a permanently stratified sulfidic lake. Front Microbiol. 2021; 12: 1 - 19. doi: 10.3389/fmicb.2021.620424 | |
dc.identifier.citedreference | Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. Microbial diversity and sulfur cycling in an early earth analogue: from ancient novelty to modern commonality. mBio. 2022; 13 ( 2 ): 1 - 16. doi: 10.1128/mbio.00016-22 | |
dc.identifier.citedreference | Begmatov S, Savvichev AS, Kadnikov V, et al. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the barents sea. Microorganisms. 2021; 9 ( 2362 ): 1 - 21. doi: 10.3390/microorganisms9112362 | |
dc.identifier.citedreference | Gassara F, Suri N, Voordouw G. Nitrate-mediated microbially enhanced oil recovery (N-MEOR) from model upflow bioreactors. J Hazard Mater. 2017; 324: 94 - 99. doi: 10.1016/j.jhazmat.2015.12.039 | |
dc.identifier.citedreference | Iwanowicz DD, Jonas RB, Schill WB, Marano-Briggs K. Novel microbiome dominated by Arcobacter during anoxic excurrent flow from an ocean blue hole in Andros Island, the Bahamas. PLoS One. 2021; 16: 1 - 16. doi: 10.1371/journal.pone.0256305 | |
dc.identifier.citedreference | Varjani SJ, Gnansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol. 2017; 245: 1258 - 1265. doi: 10.1016/j.biortech.2017.08.028 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.