Show simple item record

Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate

dc.contributor.authorJimenez-Vazquez, Eric N.
dc.contributor.authorJain, Abhilasha
dc.contributor.authorJones, David K.
dc.date.accessioned2022-12-05T16:41:28Z
dc.date.available2023-12-05 11:41:25en
dc.date.available2022-12-05T16:41:28Z
dc.date.issued2022-11
dc.identifier.citationJimenez-Vazquez, Eric N. ; Jain, Abhilasha; Jones, David K. (2022). "Enhancing iPSC- CM Maturation Using a Matrigel- Coated Micropatterned PDMS Substrate." Current Protocols 2(11): n/a-n/a.
dc.identifier.issn2691-1299
dc.identifier.issn2691-1299
dc.identifier.urihttps://hdl.handle.net/2027.42/175235
dc.description.abstractCardiac myocytes isolated from adult heart tissue have a rod-like shape with highly organized intracellular structures. Cardiomyocytes derived from human pluripotent stem cells (iPSC-CMs), on the other hand, exhibit disorganized structure and contractile mechanics, reflecting their pronounced immaturity. These characteristics hamper research using iPSC-CMs. The protocol described here enhances iPSC-CM maturity and function by controlling the cellular shape and environment of the cultured cells. Microstructured silicone membranes function as a cell culture substrate that promotes cellular alignment. iPSC-CMs cultured on micropatterned membranes display an in-vivo-like rod-shaped morphology. This physiological cellular morphology along with the soft biocompatible silicone substrate, which has similar stiffness to the native cardiac matrix, promotes maturation of contractile function, calcium handling, and electrophysiology. Incorporating this technique for enhanced iPSC-CM maturation will help bridge the gap between animal models and clinical care, and ultimately improve personalized medicine for cardiovascular diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.Basic Protocol 1: Cardiomyocyte differentiation of iPSCsBasic Protocol 2: Purification of differentiated iPSC-CMs using MACS negative selectionBasic Protocol 3: Micropatterning on PDMS
dc.publisherWiley Periodicals, Inc.
dc.subject.othermicropatterned iPSC-CMs
dc.subject.othercardiomyocyte
dc.subject.otheriPSC-CMs
dc.subject.othermicropatterning
dc.titleEnhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175235/1/cpz1601_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175235/2/cpz1601.pdf
dc.identifier.doi10.1002/cpz1.601
dc.identifier.sourceCurrent Protocols
dc.identifier.citedreferencePonce-Balbuena, D., Guerrero-Serna, G., Valdivia, C. R., Caballero, R., Diez-Guerra, F. J., Jiménez-Vázquez, E. N., … Campbell, K. F. ( 2018 ). Cardiac Kir2. 1 and NaV1. 5 channels traffic together to the sarcolemma to control excitability. Circulation Research, 122 ( 11 ), 1501 – 1516.
dc.identifier.citedreferenceMotlagh, D., Senyo, S. E., Desai, T. A., & Russell, B. ( 2003 ). Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials, 24 ( 14 ), 2463 – 2476. doi: 10.1016/s0142-9612(02)00644-0
dc.identifier.citedreferenceNovak, A., Barad, L., Zeevi-Levin, N., Shick, R., Shtrichman, R., Lorber, A., … Binah, O. ( 2012 ). Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. Journal of Cellular and Molecular Medicine, 16 ( 3 ), 468 – 482. doi: 10.1111/j.1582-4934.2011.01476.x
dc.identifier.citedreferenceOh, J. G., Kho, C., Hajjar, R. J., & Ishikawa, K. ( 2019 ). Experimental models of cardiac physiology and pathology. Heart Failure Reviews, 24 ( 4 ), 601 – 615. doi: 10.1007/s10741-019-09769-2
dc.identifier.citedreferencePekkanen-Mattila, M., Hakli, M., Polonen, R. P., Mansikkala, T., Junnila, A., Talvitie, E., … Aalto-Setala, K. ( 2019 ). Polyethylene terephthalate textiles enhance the structural maturation of human induced pluripotent stem cell-derived cardiomyocytes. Materials, 12 ( 11 ), 1805. doi: 10.3390/ma12111805
dc.identifier.citedreferenceRana, P., Anson, B., Engle, S., & Will, Y. ( 2012 ). Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: Bioenergetics and utilization in safety screening. Toxicological Sciences, 130 ( 1 ), 117 – 131. doi: 10.1093/toxsci/kfs233
dc.identifier.citedreferenceRibeiro, A. J., Ang, Y. S., Fu, J. D., Rivas, R. N., Mohamed, T. M., Higgs, G. C., … Pruitt, B. L. ( 2015 ). Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 41 ), 12705 – 12710. doi: 10.1073/pnas.1508073112
dc.identifier.citedreferenceShen, M. R., Chou, C. Y., & Chiu, W. T. ( 2003 ). Streptomycin and its analogues are potent inhibitors of the hypotonicity-induced Ca 2+ entry and Cl – channel activity. FEBS Letters, 554 ( 3 ), 494 – 500. doi: 10.1016/s0014-5793(03)01231-6
dc.identifier.citedreferenceShi, Y., Inoue, H., Wu, J. C., & Yamanaka, S. ( 2017 ). Induced pluripotent stem cell technology: A decade of progress. Nature Reviews Drug Discovery, 16 ( 2 ), 115 – 130. doi: 10.1038/nrd.2016.245
dc.identifier.citedreferenceStuder, L., Vera, E., & Cornacchia, D. ( 2015 ). Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell, 16 ( 6 ), 591 – 600. doi: 10.1016/j.stem.2015.05.004
dc.identifier.citedreferenceSun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O. J., … Wu, J. C. ( 2012 ). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4 ( 130 ), 130ra147. doi: 10.1126/scitranslmed.3003552
dc.identifier.citedreferenceTakahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. ( 2007 ). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131 ( 5 ), 861 – 872. doi: 10.1016/j.cell.2007.11.019
dc.identifier.citedreferenceTakahashi, K., & Yamanaka, S. ( 2006 ). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126 ( 4 ), 663 – 676. doi: 10.1016/j.cell.2006.07.024
dc.identifier.citedreferenceTohyama, S., Hattori, F., Sano, M., Hishiki, T., Nagahata, Y., Matsuura, T., … Fukuda, K. ( 2013 ). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12 ( 1 ), 127 – 137. doi: 10.1016/j.stem.2012.09.013
dc.identifier.citedreferenceTsan, Y. C., DePalma, S. J., Zhao, Y. T., Capilnasiu, A., Wu, Y. W., Elder, B., … Helms, A. S. ( 2021 ). Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nature Communication, 12 ( 1 ), 6167. doi: 10.1038/s41467-021-26496-1
dc.identifier.citedreferenceVadakkumpadan, F., Arevalo, H., Prassl, A. J., Chen, J., Kickinger, F., Kohl, P., … Trayanova, N. ( 2010 ). Image-based models of cardiac structure in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2 ( 4 ), 489 – 506. doi: 10.1002/wsbm.76
dc.identifier.citedreferencevan den Berg, C. W., Okawa, S., Chuva de Sousa Lopes, S. M., van Iperen, L., Passier, R., Braam, S. R., … Mummery, C. L. ( 2015 ). Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development, 142 ( 18 ), 3231 – 3238. doi: 10.1242/dev.123810
dc.identifier.citedreferenceVanden Hoek, T. L., Shao, Z., Li, C., Zak, R., Schumacker, P. T., & Becker, L. B. ( 1996 ). Reperfusion injury on cardiac myocytes after simulated ischemia. American Journal of Physiology, 270 ( 4 Pt 2 ), H1334 – 1341. doi: 10.1152/ajpheart.1996.270.4.H1334
dc.identifier.citedreferenceYang, X., Pabon, L., & Murry, C. E. ( 2014 ). Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 114 ( 3 ), 511 – 523. doi: 10.1161/CIRCRESAHA.114.300558
dc.identifier.citedreferenceYu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., … Thomson, J. A. ( 2007 ). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318 ( 5858 ), 1917 – 1920. doi: 10.1126/science.1151526
dc.identifier.citedreferenceZhao, Z., Lan, H., El-Battrawy, I., Li, X., Buljubasic, F., Sattler, K., … Akin, I. ( 2018 ). Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells International, 2018, 6067096. doi: 10.1155/2018/6067096
dc.identifier.citedreferenceZhu, W. Z., Santana, L. F., & Laflamme, M. A. ( 2009 ). Local control of excitation- contraction coupling in human embryonic stem cell-derived cardiomyocytes. Plos One, 4 ( 4 ), e5407. doi: 10.1371/journal.pone.0005407
dc.identifier.citedreferenceChen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. ( 1997 ). Geometric control of cell life and death. Science, 276 ( 5317 ), 1425 – 1428.
dc.identifier.citedreferenceArutunyan, A., Webster, D. R., Swift, L. M., & Sarvazyan, N. ( 2001 ). Localized injury in cardiomyocyte network: A new experimental model of ischemia-reperfusion arrhythmias. American Journal of Physiology. Heart and Circulatory Physiology, 280 ( 4 ), H1905 – 1915. doi: 10.1152/ajpheart.2001.280.4.H1905
dc.identifier.citedreferenceBelus, A., & White, E. ( 2003 ). Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. Journal of Physiology, 546 ( Pt 2 ), 501 – 509. doi: 10.1113/jphysiol.2002.027573
dc.identifier.citedreferenceBlock, T., Creech, J., da Rocha, A. M., Marinkovic, M., Ponce-Balbuena, D., Jimenez- Vazquez, E. N., … Herron, T. J. ( 2020 ). Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Science Reports, 10 ( 1 ), 19071. doi: 10.1038/s41598-020-76052-y
dc.identifier.citedreferenceBurridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. ( 2012 ). Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10 ( 1 ), 16 – 28. doi: 10.1016/j.stem.2011.12.013
dc.identifier.citedreferenceBurton, R. A., Plank, G., Schneider, J. E., Grau, V., Ahammer, H., Keeling, S. L., … Kohl, P. ( 2006 ). Three-dimensional models of individual cardiac histoanatomy: Tools and challenges. Annals of the New York Academy of Sciences, 1080, 301 – 319. doi: 10.1196/annals.1380.023
dc.identifier.citedreferenceChen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. ( 1998 ). Micropatterned surfaces for control of cell shape, position, and function. Biotechnology Progress, 14 ( 3 ), 356 – 363. doi: 10.1021/bp980031m
dc.identifier.citedreferenceChorro, F. J., Such-Belenguer, L., & Lopez-Merino, V. ( 2009 ). Animal models of cardiovascular disease. Revista Espanola de Cardiologia, 62 ( 1 ), 69 – 84.
dc.identifier.citedreferenceClark, P., Connolly, P., Curtis, A. S., Dow, J. A., & Wilkinson, C. D. ( 1991 ). Cell guidance by ultrafine topography in vitro. Journal of Cell Science, 99 ( Pt 1 ), 73 – 77. doi: 10.1242/jcs.99.1.73
dc.identifier.citedreferenceda Rocha, A. M., Campbell, K., Mironov, S., Jiang, J., Mundada, L., Guerrero-Serna, G., … Herron, T. J. ( 2017 ). hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Science Reports, 7 ( 1 ), 13834. doi: 10.1038/s41598-017-13590-y
dc.identifier.citedreferenceda Rocha, A. M., Creech, J., Thonn, E., Mironov, S., & Herron, T. J. ( 2020 ). Detection of drug-induced Torsades de Pointes arrhythmia mechanisms using hiPSC-CM syncytial monolayers in a high-throughput screening voltage sensitive dye assay. Toxicological Sciences, 173 ( 2 ), 402 – 415. doi: 10.1093/toxsci/kfz235
dc.identifier.citedreferenceDavis, J., Chouman, A., Creech, J., Monteiro da Rocha, A., Ponce-Balbuena, D., Jimenez Vazquez, E. N., … Herron, T. J. ( 2021 ). In vitro model of ischemic heart failure using human induced pluripotent stem cell-derived cardiomyocytes. JCI Insight, 6 ( 10 ), e134368. doi: 10.1172/jci.insight.134368
dc.identifier.citedreferenceDavis, R. P., Casini, S., van den Berg, C. W., Hoekstra, M., Remme, C. A., Dambrot, C., … Mummery, C. L. ( 2012 ). Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation, 125 ( 25 ), 3079 – 3091. doi: 10.1161/CIRCULATIONAHA.111.066092
dc.identifier.citedreferenceDiaz, R. J., & Wilson, G. J. ( 2006 ). Studying ischemic preconditioning in isolated cardiomyocyte models. Cardiovascular Research, 70 ( 2 ), 286 – 296. doi: 10.1016/j.cardiores.2005.12.003
dc.identifier.citedreferenceDike, L. E., Chen, C. S., Mrksich, M., Tien, J., Whitesides, G. M., & Ingber, D. E. ( 1999 ). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular & Developmental Biology Animal, 35 ( 8 ), 441 – 448. doi: 10.1007/s11626-999-0050-4
dc.identifier.citedreferenceDixon, J. A., & Spinale, F. G. ( 2009 ). Large animal models of heart failure: A critical link in the translation of basic science to clinical practice. Circulation. Heart Failure, 2 ( 3 ), 262 – 271. doi: 10.1161/CIRCHEARTFAILURE.108.814459
dc.identifier.citedreferenceDoncheva, N. T., Palasca, O., Yarani, R., Litman, T., Anthon, C., Groenen, M. A. M., … Gorodkin, J. ( 2021 ). Human pathways in animal models: Possibilities and limitations. Nucleic Acids Research, 49 ( 4 ), 1859 – 1871. doi: 10.1093/nar/gkab012
dc.identifier.citedreferenceGaspar, J. A., Doss, M. X., Hengstler, J. G., Cadenas, C., Hescheler, J., & Sachinidis, A. ( 2014 ). Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circulation Research, 114 ( 8 ), 1346 – 1360. doi: 10.1161/CIRCRESAHA.113.302021
dc.identifier.citedreferenceHelms, A. S., Tang, V. T., O’Leary, T. S., Friedline, S., Wauchope, M., Arora, A., & Day, S. M. ( 2020 ). Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy. JCI Insight, 5 ( 2 ), e133782. doi: 10.1172/jci.insight.133782
dc.identifier.citedreferenceHerron, T., Monteiro da Rocha, A., & Campbell, K. ( 2017 ). Cardiomyocyte purification from pluripotent stem cells. Retrieved from https://www.miltenyibiotec.com/_Resources/Persistent/90983e1c538c4f44db385930feb5c42aba62f193/App_note_PSC_derived_cardiomyocytes.pdf
dc.identifier.citedreferenceHerron, T. J., Rocha, A. M., Campbell, K. F., Ponce-Balbuena, D., Willis, B. C., Guerrero- Serna, G., … Jalife, J. ( 2016 ). Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circulation. Arrhythmia and Electrophysiology, 9 ( 4 ), e003638. doi: 10.1161/CIRCEP.113.003638
dc.identifier.citedreferenceHouser, S. R., Margulies, K. B., Murphy, A. M., Spinale, F. G., Francis, G. S., Prabhu, S. D., … Translational, B. ( 2012 ). Animal models of heart failure: A scientific statement from the American Heart Association. Circulation Research, 111 ( 1 ), 131 – 150. doi: 10.1161/RES.0b013e3182582523
dc.identifier.citedreferenceItzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., … Gepstein, L. ( 2011 ). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471 ( 7337 ), 225 – 229. doi: 10.1038/nature09747
dc.identifier.citedreferenceIvashchenko, C. Y., Pipes, G. C., Lozinskaya, I. M., Lin, Z., Xiaoping, X., Needle, S., … Willette, R. N. ( 2013 ). Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. American Journal of Physiology. Heart and Circulatory Physiology, 305 ( 6 ), H913 – 922. doi: 10.1152/ajpheart.00819.2012
dc.identifier.citedreferenceJimenez-Vazquez, E. N., Arad, M., Macias, A., Vera-Pedrosa, M. L., Cruz, F. M., Gutierrez, L. K., … Jalife, J. ( 2022 ). SNTA1 gene rescues ion channel function and is antiarrhythmic in cardiomyocytes derived from induced pluripotent stem cells from muscular dystrophy patients. Elife, 11, e76576. doi: 10.7554/eLife.76576
dc.identifier.citedreferenceKim, C. ( 2014 ). Disease modeling and cell based therapy with iPSC: Future therapeutic option with fast and safe application. Blood Research, 49 ( 1 ), 7 – 14. doi: 10.5045/br.2014.49.1.7
dc.identifier.citedreferenceKuo, P. L., Lee, H., Bray, M. A., Geisse, N. A., Huang, Y. T., Adams, W. J., … Parker, K. K. ( 2012 ). Myocyte shape regulates lateral registry of sarcomeres and contractility. American Journal of Pathology, 181 ( 6 ), 2030 – 2037. doi: 10.1016/j.ajpath.2012.08.045
dc.identifier.citedreferenceLi, S., Chen, G., & Li, R. A. ( 2013 ). Calcium signalling of human pluripotent stem cell- derived cardiomyocytes. Journal of Physiology, 591 ( 21 ), 5279 – 5290. doi: 10.1113/jphysiol.2013.256495
dc.identifier.citedreferenceLian, X., Zhang, J., Azarin, S. M., Zhu, K., Hazeltine, L. B., Bao, X., … Palecek, S. P. ( 2013 ). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nature Protocols, 8 ( 1 ), 162 – 175. doi: 10.1038/nprot.2012.150
dc.identifier.citedreferenceLieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., … Li, R. A. ( 2009 ). Absence of transverse tubules contributes to non-uniform Ca 2+ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells and Development, 18 ( 10 ), 1493 – 1500. doi: 10.1089/scd.2009.0052
dc.identifier.citedreferenceLiu, J., Laksman, Z., & Backx, P. H. ( 2016 ). The electrophysiological development of cardiomyocytes. Advanced Drug Delivery Reviews, 96, 253 – 273. doi: 10.1016/j.addr.2015.12.023
dc.identifier.citedreferenceMa, J., Guo, L., Fiene, S. J., Anson, B. D., Thomson, J. A., Kamp, T. J., & January, C. T. ( 2011 ). High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. American Journal of Physiology. Heart and Circulatory Physiology, 301 ( 5 ), H2O06 – 2017. doi: 10.1152/ajpheart.00694.2011
dc.identifier.citedreferenceMatsa, E., Burridge, P. W., & Wu, J. C. ( 2014 ). Human stem cells for modeling heart disease and for drug discovery. Science Translational Medicine, 6 ( 239 ), 239ps236. doi: 10.1126/scitranslmed.3008921
dc.identifier.citedreferenceMilani-Nejad, N., & Janssen, P. M. ( 2014 ). Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacology & Therapeutics, 141 ( 3 ), 235 – 249. doi: 10.1016/j.pharmthera.2013.10.007
dc.identifier.citedreferenceMoretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., … Laugwitz, K. L. ( 2010 ). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. New England Journal of Medicine, 363 ( 15 ), 1397 – 1409. doi: 10.1056/NEJMoa0908679
dc.identifier.citedreferenceMotlagh, D., Hartman, T. J., Desai, T. A., & Russell, B. ( 2003 ). Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. Journal of Biomedical Materials Research. Part A, 67 ( 1 ), 148 – 157. doi: 10.1002/jbm.a.10083
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.