Show simple item record

Feeding habits influence species habitat associations at the landscape scale in a diverse clade of Neotropical fishes

dc.contributor.authorCoronado-Franco, Karold Viviana
dc.contributor.authorTedesco, Pablo A.
dc.contributor.authorKolmann, Matthew A.
dc.contributor.authorBorstein, Samuel R.
dc.contributor.authorEvans, Kristine O.
dc.contributor.authorCorrea, Sandra Bibiana
dc.date.accessioned2022-12-05T16:41:31Z
dc.date.available2024-01-05 11:41:29en
dc.date.available2022-12-05T16:41:31Z
dc.date.issued2022-12
dc.identifier.citationCoronado-Franco, Karold Viviana ; Tedesco, Pablo A.; Kolmann, Matthew A.; Borstein, Samuel R.; Evans, Kristine O.; Correa, Sandra Bibiana (2022). "Feeding habits influence species habitat associations at the landscape scale in a diverse clade of Neotropical fishes." Journal of Biogeography (12): 2181-2192.
dc.identifier.issn0305-0270
dc.identifier.issn1365-2699
dc.identifier.urihttps://hdl.handle.net/2027.42/175236
dc.description.abstractAimA primary goal of community ecology is to understand the mechanisms that drive species’ spatial distribution and habitat associations. Species’ geographic distribution can be influenced by the distribution of their prey partly because consumers’ behaviour is oriented to optimal energy use during foraging. We analysed how differences in dietary preferences influence the spatial distribution and habitat associations of species at the landscape scale. We hypothesized that differences in feeding guilds will lead to divergent habitat association patterns among species.LocationAmazon River drainage basin.TaxonCharaciform fishes in the family Serrasalmidae (piranhas and pacus).MethodsWe used diet data to classify species into feeding guilds (frugivores, herbivores, piscivores, fin and scale feeders and planktivores). We used three proxies of habitat association derived from satellite products: floodplain extent, landscape heterogeneity and flood duration, in three distance buffers. We implemented phylogenetic generalized least squares models to evaluate the relationship between habitat association and feeding guilds.ResultsFrugivores, piscivores and fin and scale feeders presented similar patterns of habitat associations, with frugivores occupying wider areas of floodplain and greater landscape heterogeneity. Herbivores and planktivores were associated with smaller floodplain extents and lower landscape heterogeneity. All feeding guilds were associated with similar levels of flood duration.Main conclusionsDifferences in resource distribution (assessed through feeding guilds) can influence habitat association. Considering the hydrological variability (i.e. floodplain extent) and landscape heterogeneity that characterize floodplains, the patterns of habitat association vary with the spatial scale considered. This work highlights the importance of understanding species habitat associations by fish as well as food resource dynamics and floodplain dependence. This realization is critical for assessing the impact of anthropogenic activities on freshwater ecosystems.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfloodplain
dc.subject.otherhabitat heterogeneity
dc.subject.othermacroecology
dc.subject.otherSerrasalmidae
dc.subject.otherfeeding guilds
dc.subject.otherAmazon River basin
dc.titleFeeding habits influence species habitat associations at the landscape scale in a diverse clade of Neotropical fishes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeography and Maps
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175236/1/jbi14490_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175236/2/jbi14490.pdf
dc.identifier.doi10.1111/jbi.14490
dc.identifier.sourceJournal of Biogeography
dc.identifier.citedreferenceMcGarigal, K., Cushman, S. A., & Ene, E. ( 2012 ). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
dc.identifier.citedreferenceLenth, R. ( 2021 ). emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.5.5–1.). https://cran.r-project.org/package=emmeans
dc.identifier.citedreferenceLobón-Cerviá, J., Hess, L. L., Melack, J. M., & Araujo-Lima, C. A. R. M. ( 2015 ). The importance of forest cover for fish richness and abundance on the Amazon floodplain. Hydrobiologia, 750 ( 1 ), 245 – 255. https://doi.org/10.1007/s10750-014-2040-0
dc.identifier.citedreferenceMartelo, J., Lorenzen, K. A. I., Crossa, M., & Mcgrath, D. G. ( 2008 ). Habitat associations of exploited fish species in the Lower Amazon river – floodplain system. 2455 – 2464. https://doi.org/10.1111/j.1365-2427.2008.02065.x
dc.identifier.citedreferenceMartins, E. P., & Hansen, T. F. ( 1997 ). Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149 ( 4 ), 646 – 667.
dc.identifier.citedreferenceMittelbach, G. G., & McGill, B. J. ( 2019 ). Community ecology ( 2nd ed. ). Oxford University Press. https://doi.org/10.1093/oso/9780198835851.001.0001
dc.identifier.citedreferenceMittelbach, G. G., & Schemske, D. W. ( 2015 ). Ecological and evolutionary perspectives on community assembly. Trends in Ecology and Evolution, 30 ( 5 ), 241 – 247. https://doi.org/10.1016/j.tree.2015.02.008
dc.identifier.citedreferenceNardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R., & Grimaldi, S. ( 2019 ). GFPLAIN250m, a global high-resolution dataset of earth’s floodplains. Scientific Data, 6, 1 – 6. https://doi.org/10.1038/sdata.2018.309
dc.identifier.citedreferenceNico, L., & Taphorn, D. ( 1988 ). Food habits of piranhas in the Low Llanos of Venezuela. Biotropica, 20 ( 4 ), 311 – 321.
dc.identifier.citedreferenceOliveira, A. C., Martinelli, M., Moreira, M., Soares, M., & Cyrino, J. E. ( 2006 ). Seasonality of energy sources of Colossoma macropomum in a floodplain lake in the Amazon: Lake Camaleao, Amazonas, Brazil. Fisheries Management and Ecology, 13, 135 – 142.
dc.identifier.citedreferenceParrens, M., Al Bitar, A., Frappart, F., Paiva, R., Wongchuig, S., Papa, F., Yamasaki, D., & Kerr, Y. ( 2019 ). High resolution mapping of inundation area in the Amazon basin from a combination of L-band passive microwave, optical and radar datasets. International Journal of Applied Earth Observation and Geoinformation, 81 ( August 2018 ), 58 – 71. https://doi.org/10.1016/j.jag.2019.04.011
dc.identifier.citedreferencePelster, B., Wood, C. M., Speers-Roesch, B., Driedzic, W. R., Almeida-Val, V., & Val, A. ( 2015 ). Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 185 ( 2 ), 225 – 241. https://doi.org/10.1007/s00360-014-0879-z
dc.identifier.citedreferencePérez-Crespo, M. J., Fonseca, J., Pineda-López, R., Palacios, E., & Lara, C. ( 2013 ). Foraging guild structure and niche characteristics of waterbirds in an epicontinental lake in Mexico. Zoological Studies, 52 ( 1 ), 1 – 17. https://doi.org/10.1186/1810-522X-52-54
dc.identifier.citedreferencePerry, G., & Pianka, E. ( 1997 ). Animal foraging: Past, present and future. Trends in Ecology and Evolution, 12, 360 – 384.
dc.identifier.citedreferencePianka, E. R. ( 1973 ). The structure of lizard communities. Annual Review of Ecology and Systematics, 4 ( 1 ), 53 – 74. https://doi.org/10.1146/annurev.es.04.110173.000413
dc.identifier.citedreferencePrudente, B. S., Carneiro-Marinho, P., Valente, R. M., & Montag, L. F. A. ( 2016 ). Ecologia alimentar de Serrasalmus gouldingi (Characiformes: Serrasalmidae) na região do baixo Rio Anapu, Amazônia Oriental, Brasil. Acta Amazonica, 46 ( 3 ), 259 – 270. https://doi.org/10.1590/1809-4392201600123
dc.identifier.citedreferenceR Core Team. ( 2021 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
dc.identifier.citedreferenceRodrigues, A. C., de Santana, H. S., Baumgartner, M. T., & Gomes, L. C. ( 2018 ). Coexistence between native and nonnative species: The invasion process and adjustments in distribution through time for congeneric piranhas in a neotropical floodplain. Hydrobiologia, 817 ( 1 ), 279 – 291. https://doi.org/10.1007/s10750-018-3541-z
dc.identifier.citedreferenceSilva, P. B., Arantes, C. C., Freitas, C. E. C., Petrere, M., Jr., & Ribeiro, F. R. V. ( 2021 ). Seasonal hydrology and fish assemblage structure in the floodplain of the lower Amazon River. Ecology of Freshwater Fish, 30 ( 2 ), 162 – 173. https://doi.org/10.1111/eff.12572
dc.identifier.citedreferenceSiqueira-Souza, K., Freitas, C. E. L., & Petrere, M. ( 2016 ). Amazon floodplain fish diversity at different scales: Do time and place really matter? (Vol. 776, pp. 99 – 110 ). https://doi.org/10.1007/s10750-016-2738-2
dc.identifier.citedreferenceSouza, C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. ( 2020 ). Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, 12 ( 17 ), 1 – 27. https://doi.org/10.3390/RS12172735
dc.identifier.citedreferenceStein, A., Gerstner, K., & Kreft, H. ( 2014 ). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17 ( 7 ), 866 – 880. https://doi.org/10.1111/ele.12277
dc.identifier.citedreferenceTableau, A., Brind’Amour, A., Woillez, M., & Le Bris, H. ( 2016 ). Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats. Journal of Sea Research, 111, 76 – 87. https://doi.org/10.1016/j.seares.2015.12.004
dc.identifier.citedreferenceThornton, D. H., Branch, L. C., & Sunquist, M. E. ( 2011 ). The influence of landscape, patch, and within-patch factors on species presence and abundance: A review of focal patch studies. Landscape Ecology, 26 ( 1 ), 7 – 18. https://doi.org/10.1007/s10980-010-9549-z
dc.identifier.citedreferenceTuomisto, H., Ruokolainen, K., & Yli-halla, M. ( 2003 ). Floristic variation of Western Amazonian forests. Sience, 299 ( January ), 241 – 245.
dc.identifier.citedreferenceTurner, M., & Gardner, R. ( 2015 ). Landscape ecology in theory and practice. Springer.
dc.identifier.citedreferenceVitorino, O. B., Agostinho, C. S., & Pelicice, F. M. ( 2016 ). Ecology of Mylesinus paucisquamatus Jegu & Santos, 1988, an endangered fish species from the rio Tocantins basin. Neotropical Ichthyology, 14 ( 2 ), 1 – 8. https://doi.org/10.1590/1982-0224-20150124
dc.identifier.citedreferenceVu, V. ( 2011 ). ggbiplot: A ggplot2 based biplot. R package version 0.55. http://github.com/vqv/ggbiplot
dc.identifier.citedreferencePianka, E. R. ( 2000 ). Evolutionary ecology ( 6th ed. ). Benjamin Cummings.
dc.identifier.citedreferencePinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. ( 2021 ). _nlme: Linear and Nonlinear Mixed Effects Models_. (R package version 3.1–152). https://cran.r-project.org/package=nlme
dc.identifier.citedreferenceAnderson, J. T., Nuttle, T., Rojas, J. S. S., Pendergast, T. H., & Flecker, A. S. ( 2011 ). Extremely long-distance seed dispersal by an overfished amazonian frugivore. Proceedings of the Royal Society B: Biological Sciences, 278 ( 1723 ), 3329 – 3335. https://doi.org/10.1098/rspb.2011.0155
dc.identifier.citedreferenceAndrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S., & Giarrizzo, T. ( 2019 ). Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia, 829 ( 1 ), 265 – 280. https://doi.org/10.1007/s10750-018-3838-y
dc.identifier.citedreferenceAndrade, M. C., Sousa, L. M., Ota, R. P., Jégu, M., & Giarrizzo, T. ( 2016 ). Redescription and geographical distribution of the endangered fish Ossubtus xinguense Jégu 1992 (Characiformes, Serrasalmidae) with comments on conservation of the rheophilic fauna of the Xingu River. PLoS One, 11 ( 9 ), 1 – 29. https://doi.org/10.1371/journal.pone.0161398
dc.identifier.citedreferenceArantes, C. C., Winemiller, K. O., Asher, A., Castello, L., Hess, L. L., Petrere, M., & Freitas, C. E. C. ( 2019 ). Floodplain land cover affects biomass distribution of fish functional diversity in the Amazon River. Scientific Reports, 9 ( 1 ), 13. https://doi.org/10.1038/s41598-019-52243-0
dc.identifier.citedreferenceArantes, C. C., Winemiller, K. O., Petrere, M., Castello, L., Hess, L. L., & Freitas, C. E. C. ( 2018 ). Relationships between forest cover and fish diversity in the Amazon River floodplain. Journal of Applied Ecology, 55 ( 1 ), 386 – 395. https://doi.org/10.1111/1365-2664.12967
dc.identifier.citedreferenceBen-Hur, E., & Kadmon, R. ( 2020 ). Heterogeneity–diversity relationships in sessile organisms: A unified framework. Ecology Letters, 23 ( 1 ), 193 – 207. https://doi.org/10.1111/ele.13418
dc.identifier.citedreferenceBogotá-Gregory, J. D., Lima, F. C. T., Correa, S. B., Silva-Oliveira, C., Jenkins, D. G., Ribeiro, F. R., Lovejoy, N. R., Reis, R. E., & Crampton, W. G. R. ( 2020 ). Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Scientific Reports, 10 ( 1 ), 1 – 15. https://doi.org/10.1038/s41598-020-72349-0
dc.identifier.citedreferenceBurton, D., & Burton, M. ( 2017 ). Food procurement and processing. In Essential fish biology: Diversity, structure, and function (p. 400 ). Oxford University Press.
dc.identifier.citedreferenceCastello, L., Hess, L. L., Thapa, R., McGrath, D. G., Arantes, C. C., Renó, V. F., & Isaac, V. J. ( 2018 ). Fishery yields vary with land cover on the Amazon River floodplain. Fish and Fisheries, 19 ( 3 ), 431 – 440. https://doi.org/10.1111/faf.12261
dc.identifier.citedreferenceCauduro, R., De Paiva, D., Buarque, D. C., Collischonn, W., & Bonnet, M. ( 2013 ). Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 49, 1226 – 1243. https://doi.org/10.1002/wrcr.20067
dc.identifier.citedreferenceChesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31 ( 1 ), 343 – 366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
dc.identifier.citedreferenceCorrea, S. B., Costa-Pereira, R., Fleming, T., Goulding, M., & Anderson, J. T. ( 2015 ). Neotropical fish-fruit interactions: Eco-evolutionary dynamics and conservation. Biological Reviews, 90 ( 4 ), 1263 – 1278. https://doi.org/10.1111/brv.12153
dc.identifier.citedreferenceCorrea, S. B., van der Sleen, P., Siddiqui, S. F., Bogotá-Gregory, J. D., Arantes, C. C., Barnett, A. A., Couto, T. B. A., Goulding, M., & Anderson, E. P. ( 2022 ). Biotic indicators for ecological state change in Amazonian floodplains. Bioscience, 72, 1 – 16. https://doi.org/10.1093/biosci/biac038
dc.identifier.citedreferenceCorrea, S. B., & Winemiller, K. O. ( 2014 ). Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology, 95 ( 1 ), 210 – 224. https://doi.org/10.1890/13-0393.1
dc.identifier.citedreferenceCorrea, S. B., Winemiller, K. O., LóPez-Fernández, H., & Galetti, M. ( 2007 ). Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience, 57 ( 9 ), 748 – 756. https://doi.org/10.1641/b570907
dc.identifier.citedreferenceCorro, E. J., Ahuatzin, D. A., Aguirre, A., Favila, M. E., Cezar, M., Juan, R., & Da, W. ( 2019 ). Forest cover and landscape heterogeneity shape ant – Plant co-occurrence networks in human-dominated tropical rainforests. Landscape Ecology, 4, 93 – 104. https://doi.org/10.1007/s10980-018-0747-4
dc.identifier.citedreferenceDagosta, F. C. P., & de Pinna, M. ( 2017 ). Biogeography of Amazonian fishes: Deconstructing river basins as biogeographic units. Neotropical Ichthyology, 15 ( 3 ), 1 – 24. https://doi.org/10.1590/1982-0224-20170034
dc.identifier.citedreferencede Bem, J., Ribolli, J., Röpke, C., Winemiller, K. O., & Zaniboni-Filho, E. ( 2021 ). A cascade of dams affects fish spatial distributions and functional groups of local assemblages in a subtropical river. Neotropical Ichthyology, 19 ( 3 ), 1 – 18. https://doi.org/10.1590/1982-0224-2020-0133
dc.identifier.citedreferenceDe Lima, Á. C., & Araujo-Lima, C. A. R. M. ( 2004 ). The distributions of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshwater Biology, 49 ( 6 ), 787 – 800. https://doi.org/10.1111/j.1365-2427.2004.01228.x
dc.identifier.citedreferenceDoublet, V., Gidoin, C., Lefèvre, F., & Boivin, T. ( 2019 ). Spatial and temporal patterns of a pulsed resource dynamically drive the distribution of specialist herbivores. Scientific Reports, 9 ( 1 ), 17787. https://doi.org/10.1038/s41598-019-54297-6
dc.identifier.citedreferenceDunlop, J. A., Rayner, K., & Doherty, T. S. ( 2017 ). Dietary flexibility in small carnivores: A case study on the endangered northern quoll, Dasyurus hallucatus. Journal of Mammalogy, 98 ( 3 ), 858 – 866. https://doi.org/10.1093/jmammal/gyx015
dc.identifier.citedreferenceDuponchelle, F., Isaac, V. J., Rodrigues Da Costa, C., Doria, C., Van Damme, P. A., Herrera-R, G. A., Anderson, E. P., Cruz, R. E. A., Hauser, M., Hermann, T. W., Agudelo, E., Bonilla-Castillo, C., Barthem, R., Freitas, C. E. C., García-Dávila, C., García-Vasquez, A., Renno, J. F., & Castello, L. ( 2021 ). Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 31 ( 5 ), 1087 – 1105. https://doi.org/10.1002/aqc.3550
dc.identifier.citedreferenceForsberg, B. R., Melack, J. M., Richey, J. E., & Pimentel, T. P. ( 2017 ). Regional and seasonal variability in planktonic photosynthesis and planktonic community respiration in Amazon floodplain lakes. Hydrobiologia, 800 ( 1 ), 187 – 206. https://doi.org/10.1007/s10750-017-3222-3
dc.identifier.citedreferenceFreitas, C. E. C., Laurenson, L., Yamamoto, K. C., Forsberg, B. R., Jr., Petrere, M., Jr., Arantes, C., & Siqueira-Souza, F. K. ( 2018 ). Fish species richness is associated with the availability of landscape components across seasons in the Amazonian floodplain. PeerJ, 2018 ( 6 ), 1 – 16. https://doi.org/10.7717/peerj.5080
dc.identifier.citedreferenceGaramszegi, L. Z. ( 2014 ). Modern phylogenetic comparative methods and their application in evolutionary biology, 2014, 1 – 552. https://doi.org/10.1007/978-3-662-43550-2
dc.identifier.citedreferenceGastauer, M., Kuster, S., & Carolina, M. ( 2021 ). Landscape heterogeneity and habitat amount drive plant diversity in Amazonian canga ecosystems. Landscape Ecology, 36, 393 – 406. https://doi.org/10.1007/s10980-020-01151-0
dc.identifier.citedreferenceGoulding, M. ( 1980 ). The fishes and the forest: Explorations in the Amazonian natural history. University of California Press.
dc.identifier.citedreferenceHeino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L. M. ( 2015 ). Metacommunity organisation, spatial extent and Dispersal in aquatic systems: Patterns, processes and prospects. Freshwater Biology, 60 ( 5 ), 845 – 869. https://doi.org/10.1111/fwb.12533
dc.identifier.citedreferenceHerrera-R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal-Vallejos, F. M., Frederico, R. G., Hidalgo, M., Jézéquel, C., Maldonado, M., Maldonado-Ocampo, J. A., Ortega, H., Radinger, J., Torrente-Vilara, G., Zuanon, J., & Tedesco, P. A. ( 2020 ). The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 26 ( 10 ), 5509 – 5523. https://doi.org/10.1111/gcb.15285
dc.identifier.citedreferenceHess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., & Novo, E. M. L. M. ( 2015 ). Wetlands of the lowland Amazon Basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands, 35 ( 4 ), 745 – 756. https://doi.org/10.1007/s13157-015-0666-y
dc.identifier.citedreferenceHuby, A., Lowie, A., Herrel, A., Vigouroux, R., FrÉDÉRich, B., Raick, X., Kurchevski, G., Godinho, A. L., & Parmentier, E. ( 2019 ). Functional diversity in biters: The evolutionary morphology of the oral jaw system in pacus, piranhas and relatives (Teleostei: Serrasalmidae). Biological Journal of the Linnean Society, 127 ( 4 ), 722 – 741. https://doi.org/10.1093/biolinnean/blz048/5486927
dc.identifier.citedreferenceHuie, J. M., Summers, A. P., & Kolmann, M. A. ( 2020 ). Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proceedings of the Academy of Natural Sciences of Philadelphia, 166 ( 1 ), 1 – 15. https://doi.org/10.1635/053.166.0116
dc.identifier.citedreferenceIves, A. R. ( 2019 ). R 2 s for correlated data: Phylogenetic models, LMMs, and GLMMs. Systematic Biology, 68 ( 2 ), 234 – 251. https://doi.org/10.1093/sysbio/syy060
dc.identifier.citedreferenceIves, A. R., & Li, D. ( 2018 ). rr2: An R package to calculate R 2 s for regression models. The Journal of Open Source Software, 3 ( 30 ), 1028. https://doi.org/10.21105/joss.01028
dc.identifier.citedreferenceJackson, D. A. ( 1993 ). Stopping rules in principal components analysis: A comparison of Heuristical and statistical approaches. Ecology, 74, 2204 – 2214. https://doi.org/10.2307/1939574
dc.identifier.citedreferenceJackson, D. A., Peres-Neto, P. R., & Olden, J. D. ( 2001 ). What controls who is where in freshwater fish communities – The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58 ( 1 ), 157 – 170. https://doi.org/10.1139/cjfas-58-1-157
dc.identifier.citedreferenceJanovetz, J. ( 2005 ). Functional morphology of feeding in the scale-eating specialist Catoprion mento. Journal of Experimental Biology, 208 ( 24 ), 4757 – 4768. https://doi.org/10.1242/jeb.01938
dc.identifier.citedreferenceJézéquel, C., Tedesco, P. A., Bigorne, R., Maldonado-Ocampo, J. A., Ortega, H., Hidalgo, M., Martens, K., Torrente-Vilara, G., Zuanon, J., Acosta, A., Agudelo, E., Barrera Maure, S., Bastos, D. A., Bogotá Gregory, J., Cabeceira, F. G., Canto, A. L. C., Carvajal-Vallejos, F. M., Carvalho, L. N., Cella-Ribeiro, A., … Oberdorff, T. ( 2020 ). A database of freshwater fish species of the Amazon Basin. Scientific Data, 7 ( 1 ), 96. https://doi.org/10.1038/s41597-020-0436-4
dc.identifier.citedreferenceJohnson, M. D., & Sherry, T. W. ( 2001 ). Effects of food availability on the distribution of migratory warblers among habitats in Jamaica. Journal of Animal Ecology, 70 ( 4 ), 546 – 560. https://doi.org/10.1046/j.1365-2656.2001.00522.x
dc.identifier.citedreferenceJunk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J., & Parolin, P. ( 2010 ). Amazonian Floodplain Forests. Ecophysiology, Biodiversity and Sustainable Management. https://doi.org/10.1007/978-90-481-8725-6
dc.identifier.citedreferenceJunk, W.J., & Wantzen, K. M. ( 2004 ). The flood pulse concept: New aspects, approaches and applications – An update. Proceedings of the Second International symposium on the Management of Large Rivers for fisheries, May, 117 – 149. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific.
dc.identifier.citedreferenceJunk, Wolfgang J. ( 1997 ). The Central Amazon floodplain. Ecology of a pulsing system. Springer Berlin Heidelberg. 10.978-3-642-08214-6
dc.identifier.citedreferenceKing, T. W., Vynne, C., Miller, D., Fisher, S., Fitkin, S., Rohrer, J., Ransom, J. I., & Thornton, D. H. ( 2021 ). The influence of spatial and temporal scale on the relative importance of biotic vs. abiotic factors for species distributions. Diversity and Distributions, 27 ( 2 ), 327 – 343. https://doi.org/10.1111/ddi.13182
dc.identifier.citedreferenceKolmann, M. A., Hughes, L. C., Hernandez, L. P., Arcila, D., Betancur, R. R., Sabaj, M. H., López-Fernández, H., & Ortí, G. ( 2021 ). Phylogenomics of piranhas and Pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Systematic Biology, 70 ( 3 ), 576 – 592. https://doi.org/10.1093/sysbio/syaa065
dc.identifier.citedreferenceKolmann, M. A., Huie, J. M., Evans, K., & Summers, A. P. ( 2018 ). Specialized specialists and the narrow niche fallacy: A tale of scale-feeding fishes. Royal Society Open Science, 5 ( 1 ), 1 – 14. https://doi.org/10.1098/rsos.171581
dc.identifier.citedreferenceKraft, N. J. B., Godoy, O., & Levine, J. M. ( 2015 ). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the USA, 112 ( 3 ), 797 – 802. https://doi.org/10.1073/pnas.1413650112
dc.identifier.citedreferenceLee, M. B., & Martin, J. A. ( 2017 ). Avian species and functional diversity in agricultural landscapes: Does landscape heterogeneity matter? PLoS One, 12 ( 1 ), 1 – 21. https://doi.org/10.1371/journal.pone.0170540
dc.identifier.citedreferenceLeite, R., & Jégu, M. ( 1990 ). Régime alimentaire de deux espèces d’Acnodon (Characiformes, Serrasalmidae) et habitudes lepidophages de A. normani. Cybium, 14, 353 – 359.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.