Show simple item record

Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean

dc.contributor.authorBarton, Kristin N.
dc.contributor.authorPal, Nairita
dc.contributor.authorBrus, Steven R.
dc.contributor.authorPetersen, Mark R.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorEngwirda, Darren
dc.contributor.authorRoberts, Andrew F.
dc.contributor.authorWesterink, Joannes J.
dc.contributor.authorWirasaet, Damrongsak
dc.contributor.authorSchindelegger, Michael
dc.date.accessioned2022-12-05T16:41:43Z
dc.date.available2023-12-05 11:41:40en
dc.date.available2022-12-05T16:41:43Z
dc.date.issued2022-11
dc.identifier.citationBarton, Kristin N.; Pal, Nairita; Brus, Steven R.; Petersen, Mark R.; Arbic, Brian K.; Engwirda, Darren; Roberts, Andrew F.; Westerink, Joannes J.; Wirasaet, Damrongsak; Schindelegger, Michael (2022). "Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean." Journal of Advances in Modeling Earth Systems 14(11): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/175240
dc.description.abstractWe examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underlying bathymetry, and parameterized topographic wave drag. The SAL term accounts for the tidal loading of Earth’s crust and the self-gravitation of the ocean and the load-deformed Earth. A common method for calculating SAL is to decompose mass anomalies into their spherical harmonic constituents. Here, we compare a scalar SAL approximation versus an inline SAL using a fast spherical harmonic transform package. Wave drag accounts for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-square error (5.4 cm) for the deep ocean (> $ > $1,000 m) M2 ${mathrm{M}}_{2}$ tide compared to TPXO8 and ran twice as fast as the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal interactions with other Earth system components, and the tidal response to climate change.Plain Language SummaryOver the next century, climate change impacts on coastal regions will include floods, droughts, erosion, and severe weather events. The Department of Energy (DoE) is funding the Integrated Coastal Modeling Project to understand these potential risks better. In this paper, we implement tides in the DoE ocean model. Tides themselves respond to climate change, altering coastal flooding risk assessments. We explore the sensitivity of tides to model resolution (the spacing of model gridpoints), ocean-floor topography, and the so-called “self-attraction and loading” (SAL) effect. Self-attraction and loading occurs as the mass of water in a location fluctuates, causing a deformation of the Earth’s crust and changes in the gravitational potential, which must be accounted for when modeling tides. We present a computationally efficient method of calculating the SAL effects and show that it is more accurate than other commonly used approximations. In future work we will examine interactions of tides with other components of the climate system, including sea ice, floating ice shelves, rivers, and current systems.Key PointsWe calculate the full self-attraction and loading (SAL) term inline, in a barotropic configuration of Model for Prediction Across Scales (MPAS-Ocean)Inclusion of the inline SAL and higher resolution meshes yield improved tidal accuracy in stand-alone barotropic MPAS-Ocean configurationsA 45 to 5-km variable-resolution mesh provides reduced tidal errors with better computational performance than a quasi-uniform 8-km mesh
dc.publisherGraduate School of Oceanography, University of Rhode Island
dc.publisherWiley Periodicals, Inc.
dc.subject.othernumerical ocean modeling
dc.subject.otherE3SM
dc.subject.otherbarotropic tides
dc.subject.othersurface tides
dc.subject.otherself-attraction and loading
dc.subject.otherMPAS-Ocean
dc.titleGlobal Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175240/1/jame21713.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175240/2/jame21713_am.pdf
dc.identifier.doi10.1029/2022MS003207
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferencePringle, W. J., Wirasaet, D., Roberts, K. J., & Westerink, J. J. ( 2021 ). Global storm tide modeling with adcirc v55: Unstructured mesh design and performance. Geoscientific Model Development, 14 ( 2 ), 1125 – 1145. https://doi.org/10.5194/gmd-14-1125-2021
dc.identifier.citedreferenceMunk, W. H., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45 ( 12 ), 1977 – 2010. https://doi.org/10.1016/s0967-0637(98)00070-3
dc.identifier.citedreferenceOppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., et al. ( 2019 ). Sea level rise and implications for low lying islands, coasts and communities. In IPCC special report on the ocean and cryosphere in a changing climate. https://doi.org/10.1017/9781009157964.006
dc.identifier.citedreferenceOrton, P., Georgas, N., Blumberg, A., & Pullen, J. ( 2012 ). Detailed modeling of recent severe storm tides in estuaries of the New York City region. Journal of Geophysical Research, 117 ( C9 ). https://doi.org/10.1029/2012jc008220
dc.identifier.citedreferencePadman, L., Siegfried, M. R., & Fricker, H. A. ( 2018 ). Ocean tide influences on the Antarctic and Greenland ice sheets. Reviews of Geophysics, 56 ( 1 ), 142 – 184. https://doi.org/10.1002/2016rg000546
dc.identifier.citedreferenceParke, M. E., & Hendershott, M. C. ( 1980 ). M2, S2, K1 models of the global ocean tide on an elastic Earth. Marine Geodesy, 3 ( 1–4 ), 379 – 408. https://doi.org/10.1080/01490418009388005
dc.identifier.citedreferencePekeris, C. L., & Accad, Y. ( 1969 ). Solution of Laplace’s equations for the M2 tide in the world oceans. Philosophical Transactions of the Royal Society of London—Series A: Mathematical and Physical Sciences, 265 ( 1165 ), 413 – 436. https://doi.org/10.1098/rsta.1969.0062
dc.identifier.citedreferencePetersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., et al. ( 2019 ). An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE-II forcing. Journal of Advances in Modeling Earth Systems, 11 ( 5 ), 1438 – 1458. https://doi.org/10.1029/2018ms001373
dc.identifier.citedreferencePringle, W. J. ( 2019 ). Global tide gauge database [Dataset]. stl Retrieved from https://www.google.com/maps/d/u/0/viewer?mid=1yvnYoLUFS9kcB5LnJEdyxk2qz6g
dc.identifier.citedreferencePringle, W. J., Wirasaet, D., Suhardjo, A., Meixner, J., Westerink, J. J., Kennedy, A. B., & Nong, S. ( 2018 ). Finite-element barotropic model for the Indian and Western Pacific Oceans: Tidal model-data comparisons and sensitivities. Ocean Modelling, 129, 13 – 38. https://doi.org/10.1016/j.ocemod.2018.07.003
dc.identifier.citedreferenceRay, R. D. ( 1993 ). Global ocean tide models on the eve of TOPEX/POSEIDON. IEEE Transactions on Geoscience and Remote Sensing, 31 ( 2 ), 355 – 364. https://doi.org/10.1109/36.214911
dc.identifier.citedreferenceRay, R. D. ( 1998 ). Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21 ( 3 ), 181 – 192. https://doi.org/10.1080/01490419809388134
dc.identifier.citedreferenceRay, R. D. ( 2006 ). Secular changes of the M2 tide in the Gulf of Maine. Continental Shelf Research, 26 ( 3 ), 422 – 427. https://doi.org/10.1016/j.csr.2005.12.005
dc.identifier.citedreferenceRingler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. ( 2013 ). A multi-resolution approach to global ocean modeling. Ocean Modelling, 69, 211 – 232. https://doi.org/10.1016/j.ocemod.2013.04.010
dc.identifier.citedreferenceRocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. ( 2016 ). Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46 ( 2 ), 601 – 620. https://doi.org/10.1175/jpo-d-15-0087.1
dc.identifier.citedreferenceRuault, V., Jouanno, J., Durand, F., Chanut, J., & Benshila, R. ( 2020 ). Role of the tide on the structure of the Amazon plume: A numerical modeling approach. Journal of Geophysical Research: Oceans, 125 ( 2 ), e2019JC015495. https://doi.org/10.1029/2019jc015495
dc.identifier.citedreferenceSchaeffer, N. ( 2013 ). Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, Geosystems, 14 ( 3 ), 751 – 758. https://doi.org/10.1002/ggge.20071
dc.identifier.citedreferenceSchindelegger, M., Green, J., Wilmes, S.-B., & Haigh, I. D. ( 2018 ). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123 ( 7 ), 4593 – 4609. https://doi.org/10.1029/2018jc013959
dc.identifier.citedreferenceSchwiderski, E. W. ( 1979 ). Global Ocean tides. Part II. The semidiurnal principal lunar tide (M2), atlas of tidal charts and maps (Technical Report). Naval Surface Weapons Center. Retrieved from https://apps.dtic.mil/sti/citations/ADA084694
dc.identifier.citedreferenceShihora, L., Sulzbach, R., Dobslaw, H., & Thomas, M. ( 2022 ). Self-attraction and loading feedback on ocean dynamics in both shallow water equations and primitive equations. Ocean Modelling, 169, 101914. https://doi.org/10.1016/j.ocemod.2021.101914
dc.identifier.citedreferenceShum, C., Woodworth, P., Andersen, O., Egbert, G. D., Francis, O., King, C., et al. ( 1997 ). Accuracy assessment of recent ocean tide models. Journal of Geophysical Research, 102 ( C11 ), 25173 – 25194. https://doi.org/10.1029/97jc00445
dc.identifier.citedreferenceSimmons, H. L., Hallberg, R. W., & Arbic, B. K. ( 2004 ). Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3043 – 3068. https://doi.org/10.1016/j.dsr2.2004.09.015
dc.identifier.citedreferenceSpicer, P., Huguenard, K., Ross, L., & Rickard, L. N. ( 2019 ). High-frequency tide-surge-river interaction in estuaries: Causes and implications for coastal flooding. Journal of Geophysical Research: Oceans, 124 ( 12 ), 9517 – 9530. https://doi.org/10.1029/2019jc015466
dc.identifier.citedreferenceStammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., et al. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52 ( 3 ), 243 – 282. https://doi.org/10.1002/2014rg000450
dc.identifier.citedreferenceStepanov, V. N., & Hughes, C. W. ( 2004 ). Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation. Journal of Geophysical Research, 109 ( C3 ). https://doi.org/10.1029/2003jc002034
dc.identifier.citedreferenceTozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. ( 2019 ). Global Bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6 ( 10 ), 1847 – 1864. https://doi.org/10.1029/2019EA000658
dc.identifier.citedreferenceVan der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., et al. ( 2014 ). Scikit-image: Image processing in Python. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453
dc.identifier.citedreferenceVinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., & Davis, J. L. ( 2015 ). Dynamic adjustment of the ocean circulation to self-attraction and loading effects. Journal of Physical Oceanography, 45 ( 3 ), 678 – 689. https://doi.org/10.1175/jpo-d-14-0150.1
dc.identifier.citedreferenceVon Kármán, T. ( 1931 ). Mechanical similitude and turbulence (No. 611). National Advisory Committee for Aeronautics. Retrieved from https://resolver.caltech.edu/CaltechAUTHORS:20140804-121813080
dc.identifier.citedreferenceWang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. ( 2012 ). Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190 – 199. https://doi.org/10.1016/j.cageo.2012.06.022
dc.identifier.citedreferenceWaterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., et al. ( 2014 ). Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. Journal of Physical Oceanography, 44 ( 7 ), 1854 – 1872. https://doi.org/10.1175/jpo-d-13-0104.1
dc.identifier.citedreferenceWilliams, M. J., Jenkins, A., & Determann, J. ( 1985 ). Physical controls on ocean circulation beneath ice shelves revealed by numerical models. In Ocean, ice, and atmosphere: Interactions at the Antarctic Continental Margin (Vol. 75, pp. 285 – 299 ). https://doi.org/10.1029/ar075p0285
dc.identifier.citedreferenceAccad, Y., & Pekeris, C. L. ( 1978 ). Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 290 ( 1368 ), 235 – 266. https://doi.org/10.1098/rsta.1978.0083
dc.identifier.citedreferenceArbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., et al. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography. https://doi.org/10.17125/gov2018.ch13
dc.identifier.citedreferenceArbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 25–26 ), 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014
dc.identifier.citedreferenceArbic, B. K., & Garrett, C. ( 2010 ). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30 ( 6 ), 564 – 574. https://doi.org/10.1016/j.csr.2009.07.008
dc.identifier.citedreferenceArbic, B. K., Karsten, R. H., & Garrett, C. ( 2009 ). On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmosphere-Ocean, 47 ( 4 ), 239 – 266. https://doi.org/10.3137/oc311.2009
dc.identifier.citedreferenceArbic, B. K., Mitrovica, J. X., MacAyeal, D. R., & Milne, G. A. ( 2008 ). On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23 ( 3 ), 001573. https://doi.org/10.1029/2007pa001573
dc.identifier.citedreferenceArbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32 ( 3–4 ), 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007
dc.identifier.citedreferenceBarton, K., Pal, N., Brus, S., Petersen, M., & Engwirda, D. ( 2022a ). MPAS-Ocean Barotropic Tidal Simulation Run Directories [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7019897
dc.identifier.citedreferenceBarton, K., Pal, N., Brus, S., Petersen, M., & Engwirda, D. ( 2022b ). knbarton/E3SM: Barotropic tides and inline SAL study Archive [Software]. Zenodo. https://doi.org/10.5281/zenodo.7025138
dc.identifier.citedreferenceBarton, K., Pal, N., Brus, S., Petersen, M., & Engwirda, D. ( 2022c ). MPAS-Ocean Barotropic Tidal Simulation Analysis [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7019903
dc.identifier.citedreferenceBeaman, R. ( 2016 ). High-resolution depth model for the Northern Australia—100 m. Retrieved from https://www.deepreef.org/2017/02/28/nthaus-bathy/
dc.identifier.citedreferenceBeaman, R. ( 2020 ). High-resolution depth model for the Great Barrier Reef and Coral Sea-100m [Dataset]. Geoscience Australia, Canberra. http://dx.doi.org/10.26186/5e2f8bb629d07
dc.identifier.citedreferenceBindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., et al. ( 2019 ). Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate, (pp. 477 – 587 ). https://doi.org/10.1017/9781009157964.007
dc.identifier.citedreferenceBlakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., et al. ( 2022 ). Dissipation and Bathymetric sensitivities in an unstructured mesh global tidal model. Journal of Geophysical Research: Oceans, 127 ( 5 ), e2021JC018178. https://doi.org/10.1029/2021jc018178
dc.identifier.citedreferenceBryan, K. ( 1969 ). A numerical method for the study of the circulation of the world ocean. Journal of Computational Physics, 4 ( 3 ), 347 – 376. https://doi.org/10.1016/0021-9991(69)90004-7
dc.identifier.citedreferenceBuijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., et al. ( 2016 ). Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46 ( 5 ), 1399 – 1419. https://doi.org/10.1175/jpo-d-15-0074.1
dc.identifier.citedreferenceBuijsman, M. C., Arbic, B. K., Green, J., Helber, R. W., Richman, J. G., Shriver, J. F., et al. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003
dc.identifier.citedreferenceBuijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M., Richman, J. G., et al. ( 2020 ). On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152, 101656. https://doi.org/10.1016/j.ocemod.2020.101656
dc.identifier.citedreferenceCanadian Hydrographic Service. ( 2018 ). Canadian hydrographic Service non-navigational (NONNA) Bathymetric data [Dataset]. stl. Retrieved from https://open.canada.ca/data/en/dataset/d3881c4c-650d-4070-bf9b-1e00aabf0a1d
dc.identifier.citedreferenceCodiga, D. L. ( 2011 ). Unified tidal analysis and prediction using the utide matlab functions (Technical Report). Graduate School of Oceanography, University of Rhode Island. https://doi.org/10.13140/RG.2.1.3761.2008
dc.identifier.citedreferenceCummins, P. F., & Oey, L.-Y. ( 1997 ). Simulation of barotropic and baroclinic tides off northern British Columbia. Journal of Physical Oceanography, 27 ( 5 ), 762 – 781. https://doi.org/10.1175/1520-0485(1997)027<0762:sobabt>2.0.co;2
dc.identifier.citedreferenceDinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R., Jenkins, A., & Timmermann, R. ( 2016 ). Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography, 29 ( 4 ), 144 – 153. https://doi.org/10.5670/oceanog.2016.106
dc.identifier.citedreferenceDushaw, B. D., Egbert, G. D., Worcester, P. F., Cornuelle, B. D., Howe, B. M., & Metzger, K. ( 1997 ). A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Progress in Oceanography, 40 ( 1–4 ), 337 – 367. https://doi.org/10.1016/s0079-6611(98)00008-1
dc.identifier.citedreferenceEgbert, G. D., & Erofeeva, S. Y. ( 2002 ). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19 ( 2 ), 183 – 204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
dc.identifier.citedreferenceEgbert, G. D., & Ray, R. D. ( 2000 ). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 ( 6788 ), 775 – 778. https://doi.org/10.1038/35015531
dc.identifier.citedreferenceEgbert, G. D., & Ray, R. D. ( 2003 ). Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophysical Research Letters, 30 ( 17 ). https://doi.org/10.1029/2003gl017676
dc.identifier.citedreferenceEgbert, G. D., Ray, R. D., & Bills, B. G. ( 2004 ). Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. Journal of Geophysical Research, 109 ( C3 ), jc001973. https://doi.org/10.1029/2003jc001973
dc.identifier.citedreferenceEngwirda, D. ( 2017 ). JIGSAW-GEO (1.0): Locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere. Geoscientific Model Development, 10 ( 6 ), 2117 – 2140. https://doi.org/10.5194/gmd-10-2117-2017
dc.identifier.citedreferenceFlick, R. E., Murray, J. F., & Ewing, L. C. ( 2003 ). Trends in United States tidal datum statistics and tide range. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129 ( 4 ), 155 – 164. https://doi.org/10.1061/(asce)0733-950x(2003)129:4(155)
dc.identifier.citedreferenceGEBCO Compilation Group. ( 2021 ). GEBCO 2021 grid. https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
dc.identifier.citedreferenceGolaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. ( 2019 ). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems, 11 ( 7 ), 2089 – 2129. https://doi.org/10.1029/2018MS001603
dc.identifier.citedreferenceGordeev, R., Kagan, B., & Polyakov, E. ( 1977 ). The effects of loading and self-attraction on global ocean tides: The model and the results of a numerical experiment. Journal of Physical Oceanography, 7 ( 2 ), 161 – 170. https://doi.org/10.1175/1520-0485(1977)007<0161:teolas>2.0.co;2
dc.identifier.citedreferenceGreen, J. M., & Nycander, J. ( 2013 ). A comparison of tidal conversion parameterizations for tidal models. Journal of Physical Oceanography, 43 ( 1 ), 104 – 119. https://doi.org/10.1175/jpo-d-12-023.1
dc.identifier.citedreferenceGriffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., et al. ( 2000 ). Developments in ocean climate modelling. Ocean Modelling, 2 ( 3–4 ), 123 – 192. https://doi.org/10.1016/s1463-5003(00)00014-7
dc.identifier.citedreferenceHaigh, I. D., Pickering, M. D., Green, J. M., Arbic, B. K., Arns, A., Dangendorf, S., et al. ( 2020 ). The tides they are a-Changin’: A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Reviews of Geophysics, 58 ( 1 ), e2018RG000636. https://doi.org/10.1029/2018rg000636
dc.identifier.citedreferenceHendershott, M. ( 1972 ). The effects of solid Earth deformation on global ocean tides. Geophysical Journal International, 29 ( 4 ), 389 – 402. https://doi.org/10.1111/j.1365-246x.1972.tb06167.x
dc.identifier.citedreferenceHolloway, G., & Proshutinsky, A. ( 2007 ). Role of tides in Arctic ocean/ice climate. Journal of Geophysical Research, 112 ( C4 ), C04S06. https://doi.org/10.1029/2006jc003643
dc.identifier.citedreferenceJahfer, S., Vinayachandran, P., & Nanjundiah, R. S. ( 2017 ). Long-term impact of Amazon river runoff on northern hemispheric climate. Scientific Reports, 7 ( 1 ), 1 – 9. https://doi.org/10.1038/s41598-017-10750-y
dc.identifier.citedreferenceJay, D. A. ( 2009 ). Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophysical Research Letters, 36 ( 4 ), L04603. https://doi.org/10.1029/2008gl036185
dc.identifier.citedreferenceJayne, S. R., & St. Laurent, L. C. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000gl012044
dc.identifier.citedreferenceKang, S., Foreman, M., Crawford, W., & Cherniawsky, J. ( 2000 ). Numerical modeling of internal tide generation along the Hawaiian Ridge. Journal of Physical Oceanography, 30 ( 5 ), 1083 – 1098. https://doi.org/10.1175/1520-0485(2000)030<1083:nmoitg>2.0.co;2
dc.identifier.citedreferenceLe Provost, C., Genco, M., Lyard, F. H., Vincent, P., & Canceil, P. ( 1994 ). Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of Geophysical Research, 99 ( C12 ), 24777 – 24797. https://doi.org/10.1029/94jc01381
dc.identifier.citedreferenceLuneva, M. V., Aksenov, Y., Harle, J. D., & Holt, J. T. ( 2015 ). The effects of tides on the water mass mixing and sea ice in the Arctic Ocean. Journal of Geophysical Research: Oceans, 120 ( 10 ), 6669 – 6699. https://doi.org/10.1002/2014jc010310
dc.identifier.citedreferenceLyard, F. H., Allain, D. J., Cancet, M., Carrère, L., & Picot, N. ( 2021 ). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17 ( 3 ), 615 – 649. https://doi.org/10.5194/os-17-615-2021
dc.identifier.citedreferenceLyard, F. H., Lefevre, F., Letellier, T., & Francis, O. ( 2006 ). Modelling the global ocean tides: Modern insights from FES2004. Ocean Dynamics, 56 ( 5 ), 394 – 415. https://doi.org/10.1007/s10236-006-0086-x
dc.identifier.citedreferenceMerrifield, M. A., Holloway, P. E., & Johnston, T. S. ( 2001 ). The generation of internal tides at the Hawaiian Ridge. Geophysical Research Letters, 28 ( 4 ), 559 – 562. https://doi.org/10.1029/2000gl011749
dc.identifier.citedreferenceMüller, M., Arbic, B. K., & Mitrovica, J. ( 2011 ). Secular trends in ocean tides: Observations and model results. Journal of Geophysical Research, 116 ( C5 ), C05013. https://doi.org/10.1029/2010jc006387
dc.identifier.citedreferenceMüller, M., Cherniawsky, J., Foreman, M., & von Storch, J.-S. ( 2012 ). Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39 ( 19 ), gl053320. https://doi.org/10.1029/2012gl053320
dc.identifier.citedreferenceMunk, W. H. ( 1966 ). Abyssal recipes. Deep Sea Research and Oceanographic Abstracts, 13 ( 4 ), 707 – 730. https://doi.org/10.1016/0011-7471(66)90602-4
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.