Show simple item record

Benchmark performance of anodized vs. sandblasted implant surfaces in an acute dehiscence type defect animal model

dc.contributor.authorShahdad, Shakeel
dc.contributor.authorBosshardt, Dieter
dc.contributor.authorPatel, Mital
dc.contributor.authorRazaghi, Nahal
dc.contributor.authorPatankar, Anuya
dc.contributor.authorRoccuzzo, Mario
dc.date.accessioned2022-12-05T16:41:57Z
dc.date.available2023-12-05 11:41:53en
dc.date.available2022-12-05T16:41:57Z
dc.date.issued2022-11
dc.identifier.citationShahdad, Shakeel; Bosshardt, Dieter; Patel, Mital; Razaghi, Nahal; Patankar, Anuya; Roccuzzo, Mario (2022). "Benchmark performance of anodized vs. sandblasted implant surfaces in an acute dehiscence type defect animal model." Clinical Oral Implants Research (11): 1135-1146.
dc.identifier.issn0905-7161
dc.identifier.issn1600-0501
dc.identifier.urihttps://hdl.handle.net/2027.42/175243
dc.description.abstractObjectivesCrestal bone formation represents a crucial aspect of the esthetic and biological success of dental implants. This controlled preclinical study analyzed the effect of implant surface and implant geometry on de novo crestal bone formation and osseointegration.Materials and methodsHistological and histomorphometrical analysis was performed to compare three implant groups, that is, (1) a novel, commercially available, gradient anodized implant, (2) a custom-made geometric replica of implant “1,” displaying a superhydrophilic micro-rough large-grit sandblasted and acid-etched surface, and (3) a commercially available implant, having the same surface as “2” but a different implant geometry. The study applied a standardized buccal acute-type dehiscence model in minipigs with observation periods of 2 and 8 weeks of healing.ResultsThe amount of newly formed crestal bone (BATA) around control groups (2) and (3) was significantly increased when compared to the test group (1) at the 8 weeks of healing time point. Similar results were obtained for all parameters related to osseointegration and direct bone apposition, to the implant surface (dBIC, VBC, and fBIC), demonstrating superior osseointegration of the moderately rough, compared to the gradient anodized functionalization. After 2 weeks, the osseointegration (nBIC) was found to be influenced by implant geometry with group (3) outperforming groups (1) and (2) on this parameter. At 8 weeks, nBIC was significantly higher for groups (2) and (3) compared to (1).ConclusionsThe extent (BATA) of de novo crestal bone formation in the acute-type dehiscence defects was primarily influenced by implant surface characteristics and their ability to promote osseointegration and direct bone apposition. Osseointegration (nBIC) of the apical part was found to be influenced by a combination of surface characteristics and implant geometry. For early healing, implant geometry may have a more pronounced effect on facilitating osseointegration, relative to the specific surface characteristics.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercrestal bone formation
dc.subject.otherdehiscence type defects
dc.subject.otherimplant geometry
dc.subject.otherimplant surface
dc.subject.otherosseointegration
dc.titleBenchmark performance of anodized vs. sandblasted implant surfaces in an acute dehiscence type defect animal model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175243/1/clr13996.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175243/2/clr13996_am.pdf
dc.identifier.doi10.1111/clr.13996
dc.identifier.sourceClinical Oral Implants Research
dc.identifier.citedreferenceRupp, F., Scheideler, L., Olshanska, N., de Wild, M., Wieland, M., & Geis-Gerstorfer, J. ( 2006 ). Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research. Part A, 76, 323 – 334.
dc.identifier.citedreferenceDi Iorio, D., Traini, T., Degidi, M., Caputi, S., Neugebauer, J., & Piattelli, A. ( 2005 ). Quantitative evaluation of the fibrin clot extension on different implant surfaces: An in vitro study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74, 636 – 642.
dc.identifier.citedreferenceGottlow, J., Dard, M., Kjellson, F., Obrecht, M., & Sennerby, L. ( 2004 ). Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res, 14 ( 4 ), 538 – 45.
dc.identifier.citedreferenceHämmerle, C. H., Brägger, U., Bürgin, W., & Lang, N. P. ( 1996 ). The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clinical Oral Implants Research, 7, 111 – 119.
dc.identifier.citedreferenceHartman, G. A., & Cochran, D. L. ( 2004 ). Initial implant position determines the magnitude of crestal bone remodeling. Journal of Periodontology, 75, 572 – 577.
dc.identifier.citedreferenceHermann, J. S., Jones, A. A., Bakaeen, L. G., Buser, D., Schoolfield, J. D., & Cochran, D. L. ( 2011 ). Influence of a machined collar on crestal bone changes around titanium implants: A histometric study in the canine mandible. Journal of Periodontology, 82, 1329 – 1338.
dc.identifier.citedreferenceHuang, X., Bai, J., Liu, X., Meng, Z., Shang, Y., Jiao, T., Chen, G., & Deng, J. ( 2021 ). Scientometric analysis of dental implant research over the past 10 years and future research trends. BioMed Research International, 2021, 1 – 13.
dc.identifier.citedreferenceJaved, F., Ahmed, H. B., Crespi, R., & Romanos, G. E. ( 2013 ). Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interventional Medicine and Applied Science, 5, 162 – 167.
dc.identifier.citedreferenceKan, J. Y. K., Roe, P., Rungcharassaeng, K., Patel, R. D., Waki, T., Lozada, J. L., & Zimmerman, G. ( 2011 ). Classification of sagittal root position in relation to the anterior maxillary osseous housing for immediate implant placement: A cone beam computed tomography study. The International Journal of Oral & Maxillofacial Implants, 26 ( 4 ), 873 – 876.
dc.identifier.citedreferenceLüers, S., Laub, M., & Jennissen, H. P. ( 2016 ). Protecting ultra- and hyperhydrophilic implant surfaces in dry state from loss of wettability. Current Directions in Biomedical Engineering, 2, 557 – 560.
dc.identifier.citedreferenceMilleret, V., Lienemann, P. S., Gasser, A., Bauer, S., Ehrbar, M., & Wennerberg, A. ( 2019 ). Rational design and in vitro characterization of novel dental implant and abutment surfaces for balancing clinical and biological needs. Clinical Implant Dentistry and Related Research, 21, 15 – 24.
dc.identifier.citedreferenceMisch, C. E., Perel, M. L., Wang, H.-L., Sammartino, G., Galindo-Moreno, P., Trisi, P., Steigmann, M., Rebaudi, A., Palti, A., Pikos, M. A., Schwartz-Arad, D., Choukroun, J., Gutierrez-Perez, J.-L., Marenzi, G., & Valavanis, D. K. ( 2008 ). Implant success, survival, and failure: The international congress of Oral Implantologists (ICOI) Pisa Consensus conference. Implant Dentistry, 17, 5 – 15.
dc.identifier.citedreferenceOgle, O. E. ( 2015 ). Implant surface material, design, and osseointegration. Dental Clinics of North America, 59, 505 – 520.
dc.identifier.citedreferencePercie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. ( 2020 ). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18 ( 7 ), e3000410.
dc.identifier.citedreferencePippenger, B. E., Rottmar, M., Kopf, B. S., Stübinger, S., Dalla Torre, F. H., Berner, S., & Maniura-Weber, K. ( 2019 ). Surface modification of ultrafine-grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Clinical Oral Implants Research, 30, 99 – 110.
dc.identifier.citedreferencePuleo, D. ( 1999 ). Understanding and controlling the bone–implant interface. Biomaterials, 20, 2311 – 2321.
dc.identifier.citedreferenceSaulacic, N., Bosshardt, D. D., Bornstein, M. M., Berner, S., & Buser, D. ( 2012 ). Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater, 10 ( 23 ), 273 – 286.
dc.identifier.citedreferenceSchwarz, F., Herten, M., Sager, M., Wieland, M., Dard, M., & Becker, J. ( 2007 ). Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: A pilot study in dogs. Journal of Clinical Periodontology, 34, 78 – 86.
dc.identifier.citedreferenceSchwarz, F., Rothamel, D., Herten, M., Wüstefeld, M., Sager, M., Ferrari, D., & Becker, J. ( 2008 ). Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: An experimental study in dogs. Clinical Oral Implants Research, 19, 402 – 415.
dc.identifier.citedreferenceSmeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., Kloss, F., Gröbe, A., Heiland, M., & Ebker, T. ( 2016 ). Impact of dental implant surface modifications on osseointegration. BioMed Research International, 2016, 1 – 16.
dc.identifier.citedreferenceSusin, C., Finger Stadler, A., Musskopf, M. L., Sousa Rabelo, M., Ramos, U. D., & Fiorini, T. ( 2019 ). Safety and efficacy of a novel, gradually anodized dental implant surface: A study in Yucatan mini pigs. Clinical Implant Dentistry and Related Research, 21, 44 – 54.
dc.identifier.citedreferenceValles, C., Rodríguez-Ciurana, X., Clementini, M., Baglivo, M., Paniagua, B., & Nart, J. ( 2018 ). Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: A systematic review and meta-analysis. Clinical Oral Investigations, 22, 555 – 570.
dc.identifier.citedreferenceWennerberg, A., & Albrektsson, T. ( 2009 ). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20, 172 – 184.
dc.identifier.citedreferenceWennerberg, A., & Albrektsson, T. ( 2010 ). On implant surfaces: A review of current knowledge and opinions. The International Journal of Oral & Maxillofacial Implants, 25, 63 – 74.
dc.identifier.citedreferenceWilson, T. G., Miller, R. J., Trushkowsky, R., & Dard, M. ( 2016 ). Tapered implants in dentistry: Revitalizing concepts with technology: A review. Advances in Dental Research, 28, 4 – 9.
dc.identifier.citedreferenceLaurell, L., & Lundgren, D. ( 2011 ). Marginal bone level changes at dental implants after 5 years in function: A meta-analysis: Marginal bone level changes at dental implants. Clinical Implant Dentistry and Related Research, 13, 19 – 28.
dc.identifier.citedreferenceAlbrektsson, T., Zarb, G., Worthington, P., & Eriksson, A. R. ( 1986 ). The long-term efficacy of currently used dental implants: A review and proposed criteria of success. The International Journal of Oral & Maxillofacial Implants, 1, 11 – 25.
dc.identifier.citedreferenceAtsuta, I., Ayukawa, Y., Kondo, R., Oshiro, W., Matsuura, Y., Furuhashi, A., Tsukiyama, Y., & Koyano, K. ( 2016 ). Soft tissue sealing around dental implants based on histological interpretation. Journal of Prosthodontic Research, 60, 3 – 11.
dc.identifier.citedreferenceBosshardt, D. D., Chappuis, V., & Buser, D. ( 2017 ). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000, 73, 22 – 40.
dc.identifier.citedreferenceBotticelli, D., Berglundh, T., Persson, L. G., & Lindhe, J. ( 2005 ). Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. Journal of Clinical Periodontology, 32, 448 – 455.
dc.identifier.citedreferenceBuser, D., Chappuis, V., Belser, U. C., & Chen, S. ( 2017 ). Implant placement post extraction in esthetic single tooth sites: When immediate, when early, when late? Periodontology 2000, 73, 84 – 102.
dc.identifier.citedreferenceChoquet, V., Hermans, M., Adriaenssens, P., Daelemans, P., Tarnow, D. P., & Malevez, C. ( 2001 ). Clinical and radiographic evaluation of the papilla level adjacent to single-tooth dental implants. A retrospective study in the maxillary anterior region. Journal of Periodontology, 72, 1364 – 1371.
dc.identifier.citedreferenceDe Bruyn, H., Christiaens, V., Doornewaard, R., Jacobsson, M., Cosyn, J., Jacquet, W., & Vervaeke, S. ( 2017 ). Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontology 2000, 73, 218 – 227.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.